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Aggressive Maneuvering of a Quadrotor with a

Cable-Suspended Payload
Sarah Tang

Abstract—This work examines the system of a quadrotor
carrying a cable-suspended payload. As a motivating applica-
tion, we demonstrate the “load-transport maneuver”, where the
quadrotor picks up an object with a cable mechanism, transports
it through an environment, and drops it into a target location,
mimicking the process of Christmas tree harvesting by human-
piloted helicopters. We derive the coordinate-free dynamics for
the system, which we model as a hybrid dynamical system,
explore its differential flatness properties, and develop nonlinear
controllers for its subsystems. We then present a trajectory
generation technique that accounts for the switches of the
hybrid system. Finally, we provide experimental validation on
a quadrotor platform.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs), in particular

quadrotors, has recently become popular for a variety of tasks,

including multi-agent path planning [33], mapping and explo-

ration [27], and even acrobatic performances [2]. In addition,

they have been applied to payload manipulation. For example,

quadrotors have been successfully used for cooperative con-

struction [18], grasping [32], and object transportation [26].

However, a payload held by a gripper can undesirably increase

the inertia of the system.

An alternative is to attach the load to the quadrotor via

a cable suspension, thereby retaining more of the vehicle’s

agility. Past related works for helicopters with slung-loads [3],

[24] and quadrotors with cable-suspended loads [5], [6] have

focused on stabilization of the load or minimization of load

swing while traversing trajectories. In contrast, we hope to

take advantage of the entire range of motion and consider

trajectories with large load swings, load pick-ups and releases,

and periods of zero cable tension where the load temporarily

undergoes free-fall.

In particular, we are motivated by the process of Christmas

tree harvesting [35], where a skilled pilot picks up trees and

flings them into a truck-bed. We wish to mimic this process,

which we will refer to as the “load-transport maneuver”, with

a quadrotor. To move loads quickly from their pick-up to their

target locations, both the quadrotor and loads must experience

large attitudes. In addition, pick-ups and releases of loads

become transitions between two sets of dynamics.

Thus, we are motivated to view our system as a hybrid

dynamical system. In one subsystem, which we will refer to as

the “quadrotor-with-load subsystem”, the quadrotor is actively

controlling the load. In the other, the “quadrotor subsystem”,

the load has been released - the quadrotor motion is actively

controlled while load is undergoing projectile motion.

Past work has developed a nonlinear controller for tracking

of the load position, load attitude, and quadrotor attitude in

the quadrotor-with-load subsystem [30], [29]. This controller

has been proven to have almost global stability properties

and experimentally verified on a quadrotor platform. The goal

of this work is to extend this existing body of research by

analyzing the complete hybrid system. To this end, we unify

a number of techniques in geometric mechanics, differential

flatness analysis, and control that were previously developed

for various other non-hybrid systems. In addition, we propose

a trajectory generation method that accounts for the switching

dynamics of the hybrid system and produces continuous tra-

jectories through these transitions. Finally, we demonstrate the

execution of the load-transport maneuver on an Asctec Hum-

mingbird [1] quadrotor, which unlike previous experiments,

also includes switching between the two subsystems.

II. RELATED WORK

We use a number of geometric techniques to analyze

the dynamics of our system. In particular, we use methods

proposed by Lee [12] to develop Euler-Lagrange equations for

mechanical systems that evolve on Lie groups. These methods

have been successfully used to analyze the 3D pendulum [13],

[16] and the spherical pendulum [14]. A global, geometric

view of hybrid systems has also been introduced by [28],

who propose definitions of traditional concepts in dynamical

systems to hybrid systems, such as hybrifolds, hybrid flows,

topological equivalence between hybrid systems, and !-limit

points. However, this work is still in its early stages.

A number of techniques have been developed in planning

and control for quadrotors. In trajectory generation, there

are two main types of approaches. One of the most promi-

nent probabilistic methods is Rapidly-Exploring Random

Trees [11], and many variations have been proposed, included

LQR trees [31] and RRT* [9]. These techniques randomly

explore the space while taking into account system dynamics

to generate feasible paths. Deterministic approaches attempt

to find optimal trajectories. For example, Hehn et al. [8],

[7] use Pontryagin’s Minimum Principle to design minimum-

time trajectories. Alternatively, Mellinger et al. [20], [19] note

that the quadrotor is a differentially flat system [23] and

plan in the lower-dimensional flat output space. They generate

minimum snap trajectories by solving a constrained Quadratic

Program (QP). Richter et al. [25] similarly generate optimal

polynomial trajectories with a QP. However, they reformulate

the problem as an unconstrained QP, which provides more

numerical stability.
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Early work in quadrotor control relied on linear PID or LQR

controllers for a dynamic model linearized about the hover

state [22]. However, the major drawback of these controllers

is that they are only valid near the equilibrium hover con-

figuration. Alternatively, nonlinear geometric controllers offer

global or almost-global properties. Lee et al. [15] proposes

such a controller for a quadrotor.

This type of geometric control has, in particular, been

successful for controlling our system of interest, the quadrotor

with a cable-suspended load. Sreenath et al. [30] propose a

geometric controller for a planar model of the quadrotor-with-

load subsystem and Sreenath et al. [29] adapts the controller

for the full 3D model. This type of controller has also been

used for cooperative manipulation of cable-suspended loads

by quadrotor teams [17].

III. DYNAMIC MODEL

We begin by modeling the dynamics of the system. We

model the quadrotor and the load as a hybrid dynamical

system: again, we will refer to the case where the cable-

connection is taut as the “quadrotor-with-load” subsystem and

the case where the load has detached from the cable as the

“quadrotor” subsystem. The term system will, in general, refer

to the complete hybrid dynamics while subsystem will refer

to a specific set of dynamics. Fig. 1 illustrates the system and

its two subsystems. We treat the quadrotor as a rigid-body and

the load as a point-mass.

Fig. 1: Quadrotor with a cable-suspended load hybrid system

We describe a hybrid dynamical system with the 6-tuple:

H = (S, E,D,X ,G,R), (1)

with variables defined in Table I.

A. Quadrotor dynamics

We first derive the dynamics of the simpler quadrotor

subsystem. Its configuration manifold is R
2 ⇥ SE(3), with

states:

x = [xL ẋL xQ ẋQ
IRB

IΩB

B]
T (2)

For brevity, we drop subscripts and superscripts with the

understanding that within Section III, R = IRB and Ω = IΩB

B
.

TABLE I: Variables of the quadrotor with load system

S = {1, ..., k} Subsystem indicies, k ∈ {Z|k ≥ 1}
E = {(i, j) : i, j ∈ S} Edges between subsystems, E ⊂ S × S
D = {Di : i ∈ S} Domains of subsystems, Di ⊂ Rn

X = {Xi : i ∈ S} Vector field describing ith subsystem
G = {G(e) : e ∈ E} Guards between subsystems, G(e) ⊂ Di

R = {Re : e ∈ E} Resets between subsystems, Re : G(e) → Dj

I Inertial world frame, with axes ei
B Body frame of quad, with axes bi

g = 9.81m/s2 Gravity constant
mQ,mL ∈ R Mass of quadrotor, load
I Inertia tensor of quadrotor
f ∈ R Magnitude of thrust on quadrotor

M ∈ R3 Moment vector on quadrotor, in B
l ∈ R Length of suspension cable
T ∈ R Magnitude of tension in cable

xQ,xL ∈ R3 Position vector of quadrotor, load, in I
p ∈ S2 Unit vector from quadrotor to load, in I
ω ∈ R2 Angular velocity of load, in I
IRB ∈ SO(3) Rotation matrix of quadrotor from B to I
IΩB

B
∈ R3 Angular velocity of quadrotor, in B

Fig. 2 illustrates the coordinate frames and external forces

and moments on the quadrotor, where frame C is the interme-

diate frame after a yaw rotation. The load simply undergoes

projectile motion and is omitted from the image.

Fig. 2: Coordinate frames and external forces on the quadrotor

The quadrotor is propelled by four rotors, with the front

and back rotors rotating in one direction and the left and right

rotors rotating in the other. We can command each rotor i to

an angular speed !ri . The resulting magnitudes of force and

moment are given as functions of angular speed as:

fi = kF!
2
ri

(3)

Mi = kM!
2
ri
, (4)

where the motor constants kF and kM can be found through

calibration. These can then be related to the total external force
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and moment on the quadrotor with:


f
M

]
=

2
664

kF kF kF kF
0 kF lQ 0 −kF lQ

−kF lQ 0 kF lQ 0
kM −kM kM −kM

3
775

2
664

!2
r1

!2
r2

!2
r3

!2
r4

3
775 , (5)

where lQ is the distance from the motor to the center of mass,

or the quadrotor arm length. f acts orthogonal to the quadrotor

body along the b3 axis, and M is a 3⇥1 moment vector acting

about the body-frame axes. Given desired force and moments,

Eq. 5 can be inverted to give the desired angular speeds of

each motor. Thus, f and M are treated as the quadrotor’s

control inputs.

The quadrotor’s equations of motion can then be derived

from the Newton-Euler equations:

F = fRe3 −mQge3 = mQẍQ (6)

M = Ω⇥ [I]BΩ+ [I]BΩ̇ (7)

Here, [I]B denotes the inertia tensor as a matrix in frame B,

and Ω̇ is the angular acceleration expressed in the body-frame.

The equations of motion for the entire subsystem are:

d

dt
xL = ẋL (8)

ẍL = −ge3 (9)

d

dt
xQ = ẋQ (10)

ẍQ =
f

mQ

Re3 − ge3 (11)

Ṙ = RΩ̂ (12)

Ω̇ = [I]−1
B

(M− Ω⇥ [I]BΩ) (13)

B. Quadrotor-with-load dynamics

Next, we derive the equations of motion of the quadrotor-

with-load subsystem. A traditional approach might first repre-

sent the rotation matrix with a local coordinate system. How-

ever, these coordinates, for example Euler angles, often contain

points of singularity. In addition, they can be ambiguous; for

example, there are 24 sets of Euler angles. These angles also

result in equations of motion with complicated trigonometric

functions. Similarly, traditional approaches would deal with

the unit vector p on S
2 by describing it with two angles or by

carrying around the unit-length constraint. This again results

in complex dynamical equations.

We wish to find a coordinate-free representation of the

dynamics that gives the equations of motion in a compact,

unambiguous, singularity-free manner. To this end, we em-

ploy the approach developed by Lee [12], [13], [14], [16]

which uses Hamilton’s principle to develop the Euler-Lagrange

equations for mechanical systems that evolve on a Lie group.

To begin, recall the action integral, defined as:

S =

Z t2

t1

L dt

Here, L = T − U is the Lagrangian of the system and T , U
denote the kinetic and potential energy, respectively.

Hamilton’s principle of least action states that the path a

conservative mechanical system takes from configuration q1

at t1 to q2 at t2, where q is the set of generalized coordinates

for the system, is the one for which the action integral is an

extremum. This is often stated as:

δS =

Z t2

t1

δL dt = 0,

where δL is the variation of the Lagrangian. For systems with

applied non-conservative forces and moments, the extended

Hamilton’s principle applies:

δS =

Z t2

t1

(δW + δL) dt = 0 (14)

We apply Eq. 14 to the quadrotor-with-load subsystem. The

configuration manifold of this subsystem is R
2⇥S

2⇥SO(3),
with states:

x = [xL ẋL p ! R Ω]T (15)

We begin by calculating the Lagrangian. The total kinetic

energy is comprised of the translational kinetic energy of the

quadrotor and load and the rotational kinetic energy of the

quadrotor:

T =
1

2
mQẋQ · ẋQ +

1

2
mLẋL · ẋL +

1

2
Ω · I · Ω (16)

The quadrotor and load states are related by the constraints:

xQ = xL − lp (17)

ẋQ = ẋL − lṗ (18)

This allows us to express Eq. 16 in terms of subsystem states:

T =
1

2
mQ(ẋL − lṗ) · (ẋL − lṗ) +

1

2
mLẋL · ẋL +

1

2
Ω · I · Ω

=
1

2
(mQ +mL)ẋL · ẋL −mQlẋL · ṗ

+
1

2
mQl

2ṗ · ṗ+
1

2
Ω · I · Ω (19)

The potential energy U only contains gravitational potential

energy terms, and we again use the constraint Eq. 17:

U = mQgxQ · e3 +mLgxL · e3

= mLg(xL − lp) · e3 +mLgxL · e3

= (mQ +mL)gxL · e3 −mQglp · e3 (20)

We approximate the variation in kinetic energy using the

first-order Taylor approximation:

δT = T (ẋL + δẋL, ṗ+ δṗ,Ω+ δΩ)− T (ẋL, ṗ,Ω)

⇡
@T

@ẋL

δẋL +
@T

@ṗ
δṗ+

@T

@Ω
δΩ

= ((mQ +mL)ẋL −mQlṗ) · δẋL

+ (−mQlẋL +mQl
2ṗ) · δṗ+ [I]BΩ · δΩ (21)

Note that we have used the fact that the inertia matrix is

symmetric and 1
2 ([I]B + [I]T

B
) = [I]B. Similarly, for the
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potential energy term:

δU = U(xL + δxL,p+ δp)− U(xL,p)

⇡
@U

@xL

δxL +
@U

@p
δp

= (mQ +mL)ge3 · δxL −mQgle3 · δp (22)

Next, we find the terms of the virtual work δW . Recall that

for a system with N applied forces Fi applied at positions ri,

M rigid bodies with applied moments Mi, and n generalized

coordinates, the virtual work is:

δW =

NX

i=1

Fi ·

nX

j=1

@ri
@qj

δqj +

MX

i=1

Mi ·

nX

j=1

@IΩBi

@q̇j
δqj

For this subsystem, qj = xL,p, R. The only applied force

is the thrust force f , acting at the quadrotor’s center of mass,

with associated virtual work:

δW1 = fRe3 ·

3X

j=1

@xQ

@qj
δqj

= fRe3 ·
3X

j=1

@(xL − lp)

@qj
δqj

= fRe3 · (δxL − lδp) (23)

The quadrotor is the only rigid body in the subsystem and

is acted on by moment M, with associated virtual work:

δW2 = M ·

nX

j=1

@Ω

@q̇j
δqj

= M ·
@(RT Ṙ)∨

@Ṙ
δR

= M · (RT δR) (24)

Note that we do not consider the tension force, as it is a

constraint force that contributes no virtual work.

Eqs. 21 - 24 allow us to rearrange Eq. 14 as variations in

each generalized coordinate:

δS =

Z t2

t1

(δW1 + δW2 + δT − δU)dt

=

Z t2

t1

(
fRe3 · (δxL − lδp) +M · (RT δR)

+ ((mQ +mL)ẋL −mQlṗ) · δẋL

+ (−mQlẋL +mQl
2ṗ) · δṗ+ΩT [I]B · δΩ

−(mQ +mL)ge3 · δxL +mQgle3 · δp) dt

=

Z t2

t1

(((mQ +mL)ẋL −mQlṗ) · δẋL

+(fRe3 − (mQ +mL)ge3) · δxL) dt

+

Z t2

t1

(
(mQl

2ṗ−mQlẋL) · δṗ

+(mQgle3 − flRe3) · δp) dt

+

Z t2

t1

(
ΩT [I]B · δΩ+M · (RT δR)

)
dt (25)

While xL and ẋL vary in R
3, we must take care to properly

define the infinitesimal variations δR and δp, as they vary on

specific configuration manifolds.

From Bullo and Lewis [4], for a manifold Q and point x 2
Q, a curve in time at x is defined as γ(t) : I ! Q, where:

• I is some interval containing 0

• γ(0) = x

A variation of γ(t) is a map γ✏(t) : J ⇥ I ! Q where:

• I = [a, b], J both contain 0

• γ0(t) = γ(t) 8t 2 I
• γ✏(a) = γ(a) 8✏ 2 J
• γ✏(b) = γ(b) 8✏ 2 J

The corresponding infinitesimal variation is found with:

δγ(t) =
d

d✏

∣∣∣∣
✏=0

γ✏(t) 2 Tγ(t)Q (26)

Lee [12] show that variations for curves g(t) in a Lie group

G can be expressed using the exponential map:

g✏(t) = g(t)e✏⌘(t),

where ⌘(t) 2 g and g is the Lie algebra of G.

In our case, R is defined on the Lie group SO(3) = {R :
R

3 ! R
3|RTR = I, detR = 1}, whose corresponding Lie

algebra is the set of skew-symmetric matrices so(3). Thus,

we can represent a variation of an element R 2 SO(3) with

exponential coordinates:

R✏ = Re✏⌘̂,

where ⌘ 2 R
3. We find the infinitesimal variation with Eq. 26:

δR =
d

d✏
|✏=0Re

✏⌘̂ = R⌘̂

This variation is derived by Lee et al. [13].

p is defined on the two-sphere S
2 = {p 2 R

3|p · p = 1}.

S
2 is not itself a Lie group. However, the Lie group SO(3)

acts on S
2 transitively; that is, for 8q1, q2 2 S

2, 9R such that

q2 = Rq1. Thus, we can use the variation of R to write the

variation of p:

p✏ = e✏⇠̂p,

where ⇠ 2 R
3. The corresponding infinitesimal variation is:

δp =
d

d✏
|✏=0e

✏⇠̂p = ⇠̂p

These variations on S
2 are described by Lee et al. [16].

Thus, we can define variations:

δp = ⇠ ⇥ p 2 TpS
2, where ⇠ 2 R

3, ⇠ · p = 0 (27)

δR = R⌘̂ 2 TRSO(3), where ⌘ 2 R
3, ⌘̂ 2 so(3) (28)
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Differentiation of Eqs. 27 and 28 gives the variations:

δṗ = ⇠̇ ⇥ p+ ⇠ ⇥ ṗ (29)

δṘ = Ṙ⌘̂ +R ˆ̇⌘

δΩ̂ = δ(RT Ṙ)

= δRT Ṙ+RT δṘ

= (R⌘̂)T Ṙ+RT (Ṙ⌘̂ +R ˆ̇⌘)

= ⌘̂T Ω̂ + Ω̂⌘̂ + ˆ̇⌘

=
ĉ
Ω⌘ + ˆ̇⌘

δΩ = Ω̂⌘ + ⌘̇ (30)

With Eqs. 27 - 30, we can write each integral in Eq. 25

in terms of δxL, ⇠ and ⌘, all of which are variations in R
3.

We evaluate each integral through integration by parts, as is

traditionally done when deriving the Euler-Lagrange equations

from Hamilton’s principle. The details of the integration can

be found in Appendix A.

In particular, we note that geometrically, the tangent space

at point p is a plane tangent to the sphere at p. Thus, a point

p and its time derivative satisfy:

p · ṗ = 0 (31)

This can be written in terms of angular velocity as:

ṗ = ! ⇥ p, (32)

where {! 2 R
3|p · ! = 0}. We can then see that:

p · !̇ = 0 (33)

Eqs. 31 - 33 are used when appropriate. The result is:

δS =

Z t2

t1

((mQlp̈− (mQ +mL)ẍL

+fRe3 − (mQ +mL)ge3) · δxL) dt

+

Z t2

t1

((p⇥ (mQgle3 − flRe3

+mQlẍL −mQl
2p̈)
)
· ⇠
)
dt

+

Z t2

t1

⇣
(−Ω⇥ [I]BΩ− [I]BΩ̇ +M) · ⌘

⌘
dt = 0

(34)

Setting each variation to 0, Eq. 34 yields:

mQlp̈− (mQ +mL)ẍL − (mQ +mL)ge3 + fRe3 = 0
(35)

p⇥ (mQge3 − fRe3 +mQẍL −mQlp̈) = 0 (36)

− Ω⇥ [I]BΩ− [I]BΩ̇ +M = 0 (37)

With details in Appendix A, Eqs. 35 - 37 simplify to:

d

dt
xL = ẋL (38)

(mQ +mL)(ẍL + ge3) = (p · fRe3 −mQl(ṗ · ṗ))p (39)

ṗ = ! ⇥ p (40)

mQl!̇ = −p⇥ fRe3 (41)

Ṙ = RΩ̂ (42)

[I]BΩ̇ = M− Ω⇥ [I]BΩ (43)

C. Full hybrid system model

We are now ready to formally define the full hybrid dynam-

ical system. Recall Eq. 1:

H = (S, E,D,X ,G,R)

For this system, k = 2, S = {1, 2}, and E = {(1, 2), (2, 1)}.

Let 1 denote the quadrotor-with-load subsystem and 2 denote

the quadrotor subsystem. Recall:

x1 = [xL ẋL p ! R Ω]T

x2 = [xL ẋL xQ ẋQ R Ω]T

The transition from subsystem 1 to 2 occurs when the load

reaches a desired release position, denoted xr, and release

velocity, denoted ẋr. The transition back occurs when the

quadrotor and the load are exactly a cable-length apart and

the end of the cable is in position to pick up the load. This

defines the guards:

G = {G(1, 2) = {x1|xL = xr, ẋL = ẋr},

G(2, 1) = {x2|kxQ − xLk = l}} (44)

In terms of the resets, when the quadrotor releases the load,

all states remain the same. The reset from subsystem 1
to subsystem 2 is thus an identity map incorporating the

constraint equations Eqs. 17 - 18. When the quadrotor picks

up the load, their positions remain the same across the switch.

We model the pick-up as a nonelastic collision between the

quadrotor and the load. Using the approximation mQ >> mL,

the load assumes the velocity of the quadrotor. The quadrotor

attitude states remain the same. This defines the resets:

R = {R(1,2) = [xL ẋL xL − lp ẋL − lṗ R Ω]T ,

R(2,1) = [xL ẋQ

xQ − xL

l
0 R Ω]T } (45)

IV. DIFFERENTIAL FLATNESS

A differentially flat system [23] is a system that has a set

of flat outputs, where the states and inputs of the system can

be derived as smooth functions of these flat outputs and their

higher derivatives. Thus, rather than planning trajectories for

the full state vector, which is usually high dimensional and has

dynamically coupled variables, we can plan in the flat output

space. This allows for planning in a lower-dimensional space

where all variables are independent. Any smooth trajectory

for the flat outputs can then be mapped back into feasible

trajectories for the full set of states and inputs of the system.

We wish to define a similar notion for hybrid systems,

which additionally includes switches between subsystems. A

differentially flat hybrid system [29] is a system where:

1) Each subsystem is differentially flat.

2) All guards are functions of the flat outputs of their

corresponding subsystem and their higher derivatives.

3) All resets have sufficiently smooth transition maps be-

tween the flat outputs of the two subsystems.

We propose that a quadrotor with a cable-suspended load is

a differentially flat hybrid system, with the y1 = [xL  ]T as

flat outputs for the quadrotor-with-load subsystem and y2 =
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[xQ  ]T as the set of flat outputs for the quadrotor subsystem,

where  is the yaw angle of the quadrotor.

We can quickly see that the proposed flat outputs satisfy the

requirements on the guards and resets. The G(1, 2) functions,

xL = xr and ẋL = ẋr, are clearly functions of the proposed

flat output xL. The G(2, 1) function, kxQ−xLk = l, requires

knowledge of xL. Recall that in the quadrotor subsystem,

the load undergoes projectile motion. Thus, xL is completely

known from the initial state of the load in the subsystem. Thus,

the G(2, 1) function is a function of only the flat output, xQ.

In the subsystem 1 to subsystem 2 reset, we derive the

quadrotor position from xQ = xL − lp. The vector p can

be derived from the Newton’s equation for the load:

X
FL = −Tp−mLge3 = mLẍL (46)

p =
Tp

kTpk
=

−(ẍL + ge3)

kẍL + ge3k
(47)

We see that p is a function of the flat output xL. The yaw

angles are mapped with the identity map. In the transition from

subsystem 2 to subsystem 1, the state xL is known completely

from its initial state within the subsystem and the yaw angles

are again equal.

Finally, we prove that the proposed outputs are in fact flat

outputs for their respective subsystems.

A. Differential flatness of the quadrotor subsystem

We propose that y2 = [xQ  ]T is the set of flat outputs

for the quadrotor system, with state:

x2 = [xL ẋL xQ ẋQ
IRB

IΩB

B]
T

and input:

u = [f M]T

The load states are automatically known, as the load is sim-

ply undergoing projectile motion, and we only need to derive

the quadrotor’s states. This procedure is outlined by Mellinger

and Kumar [19] and is repeated here, as the results will also

be used for the quadrotor-with-load subsystem.

As illustrated in Fig. 2, let I be the inertial world frame,

C be an intermediate frame after yaw rotation  , and B
be a body-frame for the quadrotor. ẋQ and ẍQ, are known

from simple differentiation of the quadrotor position. From

the equation of motion Eq. 6:

fb3 = mQ(ẍQ + ge3),

we can obtain the thrust and b3 body-frame vector with:

f = mQkẍQ + ge3k (48)

b3 =
ẍQ + ge3

kẍQ + ge3k
(49)

To find the rotation matrix, IRB, we use  to define:

c1 =
⇥
cos( ) sin( ) 0

⇤T
(50)

c2 =
⇥
− sin( ) cos( ) 0

⇤T
(51)

Assuming a Z-Y-X rotation, the c2 − b3 plane is the same

as the b2 − b3 plane. Thus, we can find the remaining two

body-frame vectors:

b1 =
c2 ⇥ b3

kc2 ⇥ b3k
(52)

b2 = b3 ⇥ b1 (53)

Assuming b3 is not parallel to c1, we can now define:

R =
⇥
b1 b2 b3

⇤
(54)

Next, we differentiate the equation of motion Eq. 6:

mQ
...
xQ = ḟb3 + f

(
IΩB ⇥ b3

)
(55)

Taking the b3 component:

ḟ = mQ(
...
xQ · b3) (56)

We can substitute this ḟ back into Eq. 55:

IΩB ⇥ b3 =
mQ

f

...
xQ −

ḟ

f
b3

Taking the b1 and b2 components, we find:

(IΩB ⇥ b3) · b1 =

 
mQ

f

...
xQ −

ḟ

f
b3

!
· b1 = IΩB · b2

(57)

(IΩB ⇥ b3) · b2 =

 
mQ

f

...
xQ −

ḟ

f
b3

!
· b2 = −IΩB · b1

(58)

Finally, for a Z-Y-X rotation, in Euler-angle coordinates:

IΩB = IΩC + CΩB

=  ̇e3 + (✓̇c2 + φ̇b1) (59)

We can use this to find:

IΩB · b2 = ( ̇e3 + ✓̇c2) · b2

✓̇ =
IΩB · b2 −  ̇e3 · b2

c2 · b2
(60)

IΩB · b3 = ( ̇e3 + ✓̇c2) · b3 (61)

Eqs. 57 - 61 give the body-frame components of IΩB.

Differentiating the equation of motion again:

mQx
(4)
Q = f̈b3 + 2ḟ

(
IΩB ⇥ b3

)

+ f
(
I↵B ⇥ b3 +

IΩB ⇥ (IΩB ⇥ b3)
)

(62)

Taking the b3 component:

f̈ = mQ(x
(4)
Q · b3)− 2ḟ

(
IΩB ⇥ b3

)
− fIΩB ⇥ (IΩB ⇥ b3)

(63)

We can substitute Eq. 63 back into Eq. 62 to solve for I↵B ⇥
b3. We can find the b1 and b2 components of I↵B as done

in Eqs. 57 and 58. To find the b3 component, we use:

I↵B = I↵C + IΩC ⇥ CΩB + C↵B

=  ̈e3 +  ̇e3 ⇥ (✓̇c2 + φ̇b1)

+ (✓̈c2 + ✓̇c2 ⇥ φ̇b1 + φ̈b1) (64)

I↵B · b2 = ( ̈e3 +  ̇e3 ⇥ ✓̇c2 + ✓̈c2) · b2 (65)
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We can use this in Eq. 65 to solve for:

✓̈ =
I↵B · b2 − ( ̈e3 +  ̇e3 ⇥ ✓̇c2) · b2

c2 · b2
(66)

Thus, we know all the terms needed to find:

I↵B · b3 = ( ̈e3 +  ̇e3 ⇥ ✓̇c2 + ✓̈c2) · b3 (67)

This gives us all the body-frame components of I↵B, or IΩ̇B

B
.

Lastly, the moment input be found from the rotational

equation of motion:

M = IΩB

B ⇥ [I]B
IΩB

B + [I]B
IΩ̇B

B

Note that the moment input M is a function of the fourth

derivative of the quadrotor position.

B. Differential flatness of the quadrotor-with-load subsystem

We propose y1 = [xL  ]T as the set of flat outputs for the

quadrotor-with-load system, with state:

x1 = [xL ẋL p ! IRB
IΩB

B]
T

and input:

u = [f M]T

The load velocity and acceleration, ẋL and ẍL, are known

from simple differentiation of the load position. Recall the

load’s equation of motion, Eq. 46 and the previously found

value of p, Eq. 47:

−Tp = mL(ẍL + ge3)

p =
Tp

kTpk
=

−(ẍL + ge3)

kẍL + ge3k

From this, we can also find an explicit expression for the

tension force:

T = mLkge3 + ẍLk (68)

Differentiating the equation of motion:

−T ṗ− Ṫp = mL
...
xL

Using ṗ · p = 0:

Ṫ = −mL(
...
xL · p) (69)

ṗ =
−(mL

...
xL + Ṫp)

T
(70)

Notice that:

ṗ = ! ⇥ p

ṗ⇥ p = (! ⇥ p)⇥ p

= −p⇥ (! ⇥ p)

= p(! · p)− !(p · p)

= −!

Using Eq. 70:

! =
(mL

...
xL + Ṫp)

T
⇥ p

=
mL

...
xL

T
⇥ p (71)

Next, since p is known, we can also find:

xQ = xL − lp

Through continued differentiation of the equation of motion

for the load, we can find the higher derivatives of p and thus

the higher derivatives of xQ. With these derivatives of xQ

and the derivatives of xL from the flat outputs, we can derive

the quadrotor attitude states and inputs in a manner similar

to that in Section IV-A. The complete derivation is found in

Appendx B. In particular, note that the moment M input is a

function of sixth derivative of the load position.

V. PLANAR MODEL

We now approximate the system as a planar system oper-

ating in the y − z plane, as illustrated in Fig. 3. While this

simplification does not represent the full system, it serves as

an important first step towards understanding the challenges

in working with the full hybrid system and developing an

intuition for the usable techniques.

Fig. 3: Planar quadrotor with a point-mass load

We parametrize the quadrotor attitude with angle φQ and

the load orientation with angle φL, and specialize the angular

state variables to the plane in terms of these variables:

[I]B =

2
4
JQ 0 0
0 0 0
0 0 0

3
5

IRB =

2
4
1 0 0
0 cos(φQ) − sin(φQ)
0 sin(φQ) cos(φQ)

3
5 , IΩB

B =
⇥
φ̇Q 0 0

⇤T

p =
⇥
0 sin(φL) − cos(φL)

⇤T
, ! =

⇥
φ̇L 0 0

⇤T

M =
⇥
M 0 0

⇤T

Substituting these variables into the the equations of motion,

Eqs. 8 - 13 and Eqs. 38 - 43, and taking non-zero components

gives the planar dynamical equations for the system. For

subsystem 1, this results in the equations:

(mQ +mL)(ẍL + ge3) = (−f cos(φQ − φL)−mQlφ̇
2
L)p
(72)

mQlφ̈L = f sin(φQ − φL) (73)

JQφ̈Q =M (74)
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For subsystem 2, we obtain:

ẍL + ge3 = 0 (75)

mQ(ẍQ + ge3) = fb3 = f
⇥
− sin(φQ) cos(φQ)

⇤T
(76)

JQφ̈Q =M (77)

Here, we have redefined the variables as given in Table II.

Note the slight abuse of notation, where we retain the same

variable names but alter their domains for the planar model.

TABLE II: Variables of the planar dynamic model

JQ ∈ R Inertia of quadrotor
f,M ∈ R Magnitude of thrust, moment on quadrotor

xQ,xL ∈ R2 Position vector of quadrotor, load, in I
p ∈ S1 Unit vector from quadrotor to load
R ∈ SO(2) Rotation matrix of quadrotor from B to I
I Intertial frame, axes e2, e3
B Quadrotor body frame, axes b2, b3

φQ ∈ (−π, π] Angle of quadrotor counter-clockwise from horizontal
φL ∈ (−π, π] Angle of load counter-clockwise from vertical
˙φQ, φ̇L ∈ R Angular velocity of the quadrotor, load

The new states for the planar quadrotor-with-load and

quadrotor subsystems become:

x1 = [xL ẋL φL φ̇L φQ φ̇Q]
T

x2 = [xL ẋL xQ ẋQ φQ φ̇Q]
T ,

with configuration manifolds, S1 ⇥ SE(2) and R
2 ⇥ SE(2),

respectively.

The guards remain the same and the resets become:

R = {R(1,2) = [xL ẋL xL − lp ẋL − lṗ φQ φ̇Q]
T

R(2,1) = [xL ẋQ cos−1(
xQ − xL

l
· e3) 0 φQ φ̇Q]

T }}

The differential flatness properties of the system continue

to apply in the planar case. However, iince the yaw angle is

constrained to 0, the flat outputs are simply y1 = [xL]
T and

y2 = [xQ]
T . We can again substitute the planar specializations

of the angular variables into the previously derived differential

flatness equations.

From this point onwards, we will work exclusively with the

planar system model.

VI. CONTROL DESIGN

Next, we design system’s controllers. In particular, we want

to be able to track the flat outputs of each subsystem.

A. Quadrotor subsystem

In the quadrotor system, we use a planar adaptation of the

nonlinear geometric controller proposed by Lee et al. [15].

Fig. 7 illustrates the nested structure of the controller. The

inner loop controller tracks a given desired attitude angle

through its output commanded moment. The outer loop tracks

a desired quadrotor position by outputting a commanded thrust

and desired attitude angle.

Fig. 4: Structure of the quadrotor position controller

1) Attitude controller: For attitude errors be eQ = φQ−φ
d
Q,

ėQ = φ̇Q − φ̇dQ, let the commanded moment be:

Md = JQ(−KpφQ
(eQ)−KdφQ

(ėQ) + φ̈dQ) (78)

This control law is exponentially stable about the origin of

the error state, zQ = [eQ ėQ]
T . To see this, we first find the

error dynamics from the equation of motion:

ëQ = φ̈Q − φ̈dQ =
Md

JQ
− φ̈dQ (79)

Using M as defined by the control law:

ëQ =
JQ(−KpφQ

(eQ)−KdφQ
(ėQ) + φ̈dQ)

JQ
− φ̈dQ

= −KpφQ
(eQ)−KdφQ

(ėQ) (80)

The error dynamics become:

z̈Q =


0 1

−KpφQ
−KdφQ

]
zQ (81)

This is a linear time-invariant system, with eigenvalues:

λ =
1

2
(−b±

p
b2 − 4a), a = KpφQ

, b = KdφQ

λ will have negative real part for all KpφQ
> 0 and KdφQ

> 0.

Thus, the origin of the error state [eQ ėQ]
T is exponentially

stable.

2) Position controller: Next, we design the outer loop

controller that tracks a desired quadrotor position, xd
Q. For

error terms ex = xQ−xd
Q, ėx = ẋQ− ẋd

Q, let the input thrust

be calculated with:

Fd = −Kpex −Kdėx +mQ(ge3 + ẍd
Q) (82)

fd = Fd · b3 (83)

Furthermore, we define the desired attitude as:

bd
3 =

Fd

kFdk
(84)

φd
Q = tan−1

✓
−bd

3 · e2
bd
3 · e3

◆
(85)

We have shown in the previous section that the attitude

dynamics are exponentially stable. By the Converse Lyapunov

Theorem, there exists a Lyapunov function VQ such that for

positive definite matrices Mq , MQ, and WQ and all zQ:

zTQMqzQ  VQ  zTQMQzQ (86)

V̇Q  −zTQWQzQ (87)
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Assume the initial attitude and position errors and the desired

acceleration are uniformly bounded with:

|eQ(0)| <
π

2
kex(0)k < ex,max

kmQ(ge3 + ẍd
Q)k  Y

Consider WQ defined in Eq. 87 and additionally define:

WxQ =


cY
mQ

0

Y + ex,max 0

]
(88)

Wx =

"
cKp

mQ
(1− α) 1

2
cKd

mQ
(1− α)

1
2
cKd

mQ
(1− α) Kd(1− α)− c

#
(89)

Assume the existence of positive constants c,α,Kp,Kd satis-

fying the conditions:

c < min

⇢p
mQKp,Kd(1− α),

4mQKpKd(1− α)

4mQKp +K2
d(1− α)

}
,

(90)

λm(Wx) >
kWxQk

2

4λm(WQ)
, (91)

where λm indicates the minimum eigenvalue. Then, the

quadrotor position error dynamics are exponentially stable

about the origin.

Additionally define the notion of exponential attractiveness:

an equilibrium point x = 0 is exponentially attractive if for

some δ > 0, there exists constants γ(δ) > 0 and β > 0
such that kx(0)k < δ implies kx(t)k  γ(δ)e−βt for all t >
0 [15]. If the initial attitude error |eQ(0)| ≥

⇡
2 but all other

conditions hold, then the quadrotor position error dynamics

are exponentially attractive.

This proof is provided in Appendix C.

B. Quadrotor-with-load subsystem

For the planar quadrotor-with-load subsystem, we use the

controller proposed by Sreenath et al. [30], which we briefly

describe here. The controller structure is illustrated in Fig. 8.

Note the similar structure to the quadrotor subsystem con-

troller.

Fig. 5: Structure of the load position controller

The quadrotor attitude controller remains the same as in the

quadrotor subsystem. For load attitude errors as eL = φd
L−φL,

ėL = φ̇L − φ̇d
L, the load attitude control law is:

φd
Q = φL + sin−1

✓
−kpφL

eL − kdφL
ėL +

φd
LmQl

f

◆
, (92)

Assume kpφL
> 0, kdφL

> 0 and the initial conditions satisfy:

k − kpφL
eL − kdφL

ėL +
φ̈d
LmQl

f
k < 1 (93)

Further, assume the existence of positive constants α, c1, kpφL
,

and kdφL
where:

0 <
f

mQl
 α

c1 < min

(q
αkpφL

,
kpφL

kdφL

kpφL
+ kdφL

/2

)

WL =

2
4αkpφL

c1
↵kdφL

c1

2
↵kdφL

c1

2 αkdφL
− c1

3
5

WLQ =


c1α

2 α2

0 0

]

λm(WL) >
kWLQk

2

4λm(WQ)

The outermost load position controller is defined with

respect to ex = xL − xd
L, ėx = ẋL − ẋd

L as:

fd = (A+B) · b3 (94)

A = −kpex − kdėx + (mLẍ
d
L +mLge3) (95)

B = mLẍ
d
L −mQlp̈

d
L +mQge3 (96)

Furthermore, we can define:

pd = −
A

kAk

φd
L = tan−1

✓
−A · e2
A · e3

◆
(97)

Assume the uniform bound:

kmL(ẍ
d
L + ge3) +mQ(ẍ

d
Q + ge3)k  C

and the existence of positive constants d1, d2, c2, kp, and kd
such that:

0 <
1

|pd ·Re3|
 |eL + eQ|  β  1

mQlkp̈− p̈dk  d1|eL|+ d2|ėL|

c2 < min

⇢p
kp,

kpkd(1 + β)2

kp + k2d/4

}

With this controller, the load position error exponentially

converges to 0. The proofs for the stability properties of

Eqs. 92 - 97 is found in Sreenath et al. [30].

VII. TRAJECTORY GENERATION

Now that we have derived and designed controllers for

tracking the flat outputs of each subsystem, we can plan

their trajectories in the flat output space. Note that, assum-

ing a Euler-angle parametrization of the rotation matrix, the

dimension of the full state for both subsystems is 18, while

their flat output spaces are dimension 2. This reduction of

dimensionality is a clear advantage of planning in this space.
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A. Trajectory optimization

In this section, we describe a general method for trajectory

optimization. This method has been described in a number

of previous works [19], [21], [25] and proven effective for

generating smooth and fast trajectories for quadrotor systems.

The trajectory generation problem can be stated as: given

a series of nw waypoint constraints, each dictating a desired

position or higher derivative value at a specified time, find a

trajectory x(t) that satisfies the constraints while minimizing

the cost functional:

J =

Z t1

t0

k
drx(t)

dt
k2dt (98)

Let Pi(t), for i = 1, 2, ..., N , be a set of basis functions.

We write the trajectory as x(t) = c0+
PN

i=1 ciPi(t). Defining

the vector c = [c0 c1 c2 ... cN ]T , we can formulate the

problem as the Quadratic Program (QP):

minimize J = cTQc (99)

subject to Ac = b

Here, Q is a symmetric, square matrix found by explicitly

evaluating the cost functional integral in terms of the trajectory

coefficients. The constraint function Ac = b comes from

the waypoint constraints. Since the problem only has equality

constraints, Eq. 99 has a known analytic solution:

2Q AT

A 0

] 
c

λ

]
=


0

b

]
,

where λ is a vector of Lagrange multipliers. Alternatively,

numerical tools such as Matlab can also be used.

Now suppose the trajectory were an n-dimensional vector,

x(t) = [x1(t) x2(t) ... xn(t)]
T . If the waypoint constraints

are independent, then each component of x can be optimized

independently. Otherwise, we simply concatenate the coeffi-

cients to form the variable vector c = [c0,x1
c1,x1

... cN,xn
]T .

Mellinger and Kumar [19], [21] show that since the input

moment is a function of the fourth derivative of the quadro-

tor position, finding minimum-snap trajectories, or r = 4
in Eq. 98, yields smooth trajectories through all waypoint

constraints. We apply the same reasoning to our system. In the

quadrotor subsystem, we seek x(t) = xd
Q(t) and minimize the

fourth derivative of the quadrotor trajectory. In the quadrotor-

with-load subsystem, where x(t) = xd
L(t), we minimize the

sixth derivative of the load trajectory (since the input moment

is a function of the sixth derivative of the load position).

B. Formulation with trigonometric basis

The technique presented in Section VII-A applies for any

family basis functions Pi(t). A popular choice for quadrotors

has been polynomial functions Pi(t) = ti [19], [25]. Mellinger

et al. [21] alternatively use Legendre polynomials.

Unlike previous work, we chose instead to use a trigono-

metric basis, with trajectories of the form:

x(t) = c0 +

NX

n=1

An cos(
2nπt

L
) +

MX

m=1

Bm sin(
2mπt

L
),

(100)

where the period L is chosen a priori. In particular, trigono-

metric functions are periodic and thus well-suited for a re-

peated maneuver like the load-transport maneuver. In addi-

tion, sin() and cos() are C∞ differentiable, the trajectory is

guaranteed to be smooth. Finally, trigonometric functions have

desirable orthogonality properties, allowing us to simplify the

matrix Q in the quadratic form of the cost functional to a

simple diagonal matrix.

To specialize the QP in Eq. 99 for a trigonometric basis,

we analytically evaluate the cost function integral. For any

derivative r, where r ≥ 0:

x(r)(t) = c
(r)
0 +

NX

n=1

An(
2nπ

L
)r cos(

2nπ

L
t+

rπ

2
) (101)

+
MX

m=1

Bm(
2mπ

L
)r sin(

2mπ

L
t+

rπ

2
)

The cost functional, Eq. 98, becomes:

J =

Z L

0

k
drx(t)

dt
k2dt

=

Z L

0

 
c
(r)
0 +

NX

n=1

An(
2nπ

L
)r cos(

2nπ

L
t+

rπ

2
)

+

MX

m=1

Bm(
2mπ

L
)r sin(

2mπ

L
t+

rπ

2
)

!2

dt

=

Z L

0

(c
(r)
0 )2 +

NX

n=1

A2
n(

2nπ

L
)2r cos2(

2nπ

L
t+

rπ

2
)

+

MX

m=1

B2
m(

2mπ

L
)2r sin2(

2mπ

L
t+

rπ

2
)

+ 2c
(r)
0 (

NX

n=1

An(
2nπ

L
)r cos(

2nπ

L
t+

rπ

2
)

+
MX

m=1

Bm(
2mπ

L
)r sin(

2mπ

L
t+

rπ

2
))

+ 2
NX

n=1

NX

p=n

AnAp(
2nπ

L
)r(

2pπ

L
)r

cos(
2nπ

L
t+

rπ

2
) cos(

2pπ

L
t+

rπ

2
)

+ 2

NX

n=1

MX

m=1

AnBm(
2nπ

L
)r(

2mπ

L
)r

cos(
2nπ

L
t+

rπ

2
) sin(

2mπ

L
t+

rπ

2
)

+ 2

MX

m=1

MX

p=m

BmBp(
2mπ

L
)r(

2pπ

L
)r

sin(
2mπ

L
t+

rπ

2
) sin(

2pπ

L
t+

rπ

2
)dt

Assume r > 0. Thus, c
(r)
0 = 0. We can use orthogonality
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properties:

Z L

0

cos(
2nπ

L
t) sin(

2mπ

L
t)dt = 0

Z L

0

cos(
2nπ

L
t) cos(

2mπ

L
t)dt =

8
><
>:

L, n = m = 0
L
2 , n = m > 0

0, n 6= m
Z L

0

sin(
2nπ

L
t) sin(

2mπ

L
t)dt =

(
L
2 , n = m > 0

0, n 6= m or n = m = 0
,

to reduce the cost functional to the simple form:

J =

NX

n=1

A2
n(

2nπ

L
)2r(

L

2
) +

MX

m=1

B2
m(

2mπ

L
)2r(

L

2
)

Let c = [c0 A1 A2 ... AN B1 B2 ... BM ]T . In the

quadratic form of J , Q becomes:

Q[i, j] =

8
><
>:

0, i 6= j or i = j = 1
L
2 (

2i⇡
L
)2r, i = j  N

L
2 (

2(i−N−1)⇡
L

)2r, N < i = j  (N +M + 1)

(102)

Note that we index the elements of Q from 1. Finally, for

r = 0:

J = c20L+

NX

n=1

A2
n(

2nπ

L
)2r(L)

Q[i, j] =

8
><
>:

0, i 6= j or i = j = 1

L( 2i⇡
L
)2r, i = j  N

0, N < i = j  (N +M + 1)

The derivative expression in Eq. 101 also allows us to

express a waypoint constraint on any derivative at time ti as

a linear equation of the coefficients. This allows us to easily

construct the constraint function Ac = b.

For each problem, we must also choose the period L and the

number of coefficients N and M . Suppose we have a series of

waypoint constraints whose corresponding times are over [t0,

tf ]. We choose L ≥ (tf − t0). Since the trajectory is periodic,

the equality is only possible if all waypoint constraints at t0 are

the same as those at tf . For nw constraints, the chosen number

of coefficients must satisfy (N + M + 1) ≥ nw. However,

special consideration must be given to constraints at times

where sin() or cos() are 0. For example, for two position

constraints each at t = 0 and t = L
2 , we must specifically

have (N +1) ≥ 2, since sin( 2m⇡
L
t) disappears. In general, we

must also satisfy (N+1) ≥ np, N ≥ ne, and M ≥ n0, where

np, ne, and no are the number of constraints on position, even

derivatives, and odd derivatives, respectively, at t = 0, L2 , L.

C. Trajectory design for the load-transport maneuver

Finally, we use the previously described methods to design

trajectories for the load-transport maneuver. Unlike previous

works, which generated trajectories for a single dynamical sys-

tem, we wish to design trajectories for the full hybrid system.

In particular, this involves planning the location of switches

between subsystems and designing subsystem trajectories that

will transition continuously at these switching points.

Let the load begin at position (y0, z0) and have desired

ending position (y1, z1). We begin by designing the desired

load trajectory, xd
L(t) = [ydL(t) zdL(t)]

T . We assume that the

load will be released at time L
2 , which becomes the location

of the switch from the quadrotor-with-load to the quadrotor

subsystem. Defining the switching time in terms of L allows

us to find the trajectory coefficients without explicitly defining

L, which will be chosen later.

Suppose the load is released at (yr, zr) with velocity

(ẏr, żr). This gives the boundary conditions:

xd
L(0) = [y0 z0]

T

xd
L

✓
L

2

◆
= [yr zr]

T

ẋd
L

✓
L

2

◆
= [ẏr żr]

T

However, the release positions and velocities cannot be chosen

independently, as the load must travel the required horizontal

distance in the time it takes to fall to the ground. This

constraint is characterized with:

y1 − yr = ẏrτ (103)

z1 − zr = −
g

2
τ2 + żrτ (104)

Solving the previous two equations for τ and equating them

gives the constraint:

y1 − yr
ẏr

=
żr +

p
ż2r − 2g(z1 − zr)

g
(105)

This constraint is nonlinear, which is not directly usable in

the QP formulation. However, if ẏr is specified, Eq. 103 can

be used to solve for τ . This can be substituted into Eq. 104,

which is a linear constraint that can be used in the QP. The

analogous situation holds if żr is specified.

However, alternatively, we limit the number of trajectory co-

efficients to the minimum. This allows us to find an analytical

solution.

Suppose we have a trajectory of the form:

xd
L(t) =


cy +Ay cos(

2⇡t
L
) +By sin(

2⇡t
L
)

cz +Az cos(
2⇡t
L
) +Bz sin(

2⇡t
L
)

]
(106)

Substituting this generic form into the constraint equations,

we have:

cy +Ay = y0, cy −Ay = yr

cz +Az = z0, cz −Az = zr

−
2π

L
By = ẏr

−
2π

L
Bz = żr
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Solving these and using Eq. 105:

cy =
y0 + yr

2
, Ay =

y0 − yr
2

cz =
z0 + zr

2
, Az =

z0 − zr
2

Bz = −
L

2π
żr

By = (yr − y1)
L

2π
τ,where τ =

żr +
p
ż2r − 2g(z1 − zr)

g

We can then design trajectories by choosing the parameters

(yr, zr), (ẏr, żr). For example, if we choose yr = y1, ẏr = 0,

and an arbitrary non-zero żr, the load trajectory that is an

ellipse in the yz-plane, where the load is released at 0 velocity

directly above its desired position. Note, however, that while

the load simply falls straight down, the trajectory can still be

aggressive in the sense that the load angle at the time of the

drop can be large.

Next, we must choose the period of the trajectory L, where

a smaller L will result in a more aggressive trajectory, that is,

larger load and quadrotor angles and velocities. Rather than

choosing L arbitrarily, we can give it a physical meaning.

From differential flatness equations, the load angle is related

to the load acceleration with:

tan(φL) =
ÿL

−(z̈L + g)

We choose a load angle at the time of release as φL,r, which

will occur at t = L
2 . We can then solve:

tan(φL,r) =
ÿL(

L
2 )

−(z̈L(
L
2 ) + g)

=
−
(
2⇡
L

)2
Ay

−
⇣(

2⇡
L

)2
Az + g

⌘

L = 2π

✓
g tan(φL,r)

Ay −Az tan(φL,r)

◆−
1

2

Note that φL,r is the maximum nominal load angle for the

load trajectory. The actual desired load angles, however, which

are designated by the load position controller, will almost

always reach values greater than this. Thus, φL,r is merely an

approximation of the maximum load angle to aid in choosing

L with a physical intuition, not an absolute maximum for the

load angle in the designed trajectory.

Finally, must design the corresponding quadrotor trajectory.

To guarantee transition continuity, we again take advantage of

the differential flatness of the system. We use the nominal

quadrotor trajectory corresponding to the designated load

trajectory as the desired trajectory for the quadrotor subsystem.

The differential flatness equations of the quadrotor-with-load

subsystem allows us to explicitly find the desired quadrotor

trajectory as:

xd
Q(t) = xd

L(t)− lp

= xd
L(t) + l

(ẍd
L(t) + ge3)

kẍd
L(t) + ge3k

(107)

This choice of xd
Q(t) guarantees that the quadrotor’s trajectory

will remain continuous during the load-drop transition, even

if the transition does not occur exactly at t = L
2 because of

system errors. After the load is released, the quadrotor simply

“continues on” in its path. At time t = L, it will return to the

states necessarily to pick up a second load at the same location.

While Eq. 107 might not always be notationally simple, in

implementation, we can calculate xd
Q(t) at each time t using

the designed load trajectory and Eq. 107.

VIII. EXPERIMENTAL RESULTS

A. Platform

We run experiments on a Hummingbird quadrotor from

Ascending Technologies [1]. The quadrotor has a wingspan

of 55cm and height of 8cm. To manipulate the load, we use

an electromagnet whose power source can be switched on or

off as needed. The magnet is suspended from a 40cm ball-

chain cable. The total mass of the quadrotor, with this added

mechanism, is 687g. The load is a plastic box with side length

5.7cm and mass 88g, and the top of the box is metal for

attachment of the electromagnet. A VICON motion capture

system [34] provides state information at 100Hz. The load is

treated as a point-mass; we track the position of its center and

ignore its orientation. Fig. 6 pictures our set-up.

Fig. 6: Hummingbird quadrotor with cable-suspended load

B. Individual controllers

First, we test the controllers of each individual subsystem.

Fig. 7 demonstrates the quadrotor tracking an ellipse. We see

that the quadrotor controller drives errors quickly towards 0.

Next, use the trajectory optimization technique described in

Section VII-B to generate a trajectory through four waypoints:

xd
L(0) = [−1.2 0.8]T ,xd

L(1.4) = [−1 1.2]T ,xd
L(2.4) =

[0.3 1.5]T ,xd
L(3.2) = [1 1.4]T ,xd

L(6) = [−1.2 0.8]T .

All higher derivatives are constrained to be 0 at t = 0 and

t = 6. We choose L = 6, N = 10, M = 5. Fig. 8a displays

the quadrotor and load trajectories, as well as the desired

waypoints; Fig. 8 shows the tracking results.

C. Load transport maneuver

Finally, we execute an example of the load transport

maneuver. For the first, the parameters are: (y0, z0) =
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Fig. 7: Quadrotor states over time, tracking with quadrotor

subsystem controller
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Fig. 8: Load states over time, tracking with quadrotor-with-

load subsystem controller

(−0.80, 0.81), (y1, z1) = (1, 0), (yr, zr) = (y1, 1.2), ẏr =
0,φL,r = 20o. The resulting load trajectory designed is:

L = 3.2840

xd
L(t) =


0.0953− 0.9046 cos( 2⇡t

L
) + 0.1944 sin( 2⇡t

L
)

1− 0.02 sin( 2⇡t
L
)

]

In implementation, at load pick-up, we verify that the dis-

tance between the quadrotor and load is consistently the cable

length for 0.8 seconds before switching from the quadrotor

controller to the quadrotor-with-load controller. This delay

allows us to verify that the load was successfully picked up

and avoids false switches during failed pick-up attempts. The

load is released when the load reaches within a 5cm Euclidean

distance of its desired release position and within 2cm/s of

its desired release velocity in both directions.

Fig. 9 shows the results of this maneuver’s execution, with

the black vertical lines indicating switches between controllers.

We see that the load angle and quadrotor attitude both reach

angles of 20o. In addition, the load velocity reaches almost

2m/s.

The load is picked up around 15 seconds and released at

around 23 seconds. At these points, the controller applied to

the system switches. As seen in Figs. 9b, 9c, and 9g, the

quadrotor states remain continuous through these transition

points and, despite the switch in controller, state errors do

not increase. Additionally, note the fast convergence of the

load states in Figs. 9d - 9f to their desired drop conditions.

However, as can be seen from the load path in Fig. 9a,

the horizontal velocity at load release was not identically 0,

resulting in some error in the final load position.

We also experiment with release of the load at a non-

zero horizontal velocity. Here, we omit the load pick-up and

simply focus on load release. The load trajectory parameters

are: (y0, z0) = (−1.2, 1.3), (y1, z1) = (1.2, 0), (yr, zr) =
(0.8, 1.4), żr = 0.15,φL,r = 20o, resulting in the desired load

trajectory:

L = 3.3553

xd
L(t) =


−0.2− 1 cos( 2⇡t

L
)− 0.3885 sin( 2⇡t

L
)

1.35− 0.05 cos( 2⇡t
L
)− 0.0801 sin( 2⇡t

L
)

]

Fig. 10 shows the load states at the release point, and we can

clearly see that the load is in projectile motion. The resulting

desired horizontal velocity at release was 0.73m/s. We can see

the load reaches the ground at around 28 seconds, where it is

close to its desired y-position of 1.2m.

IX. CONCLUSION

We have analyzed the hybrid system of a quadrotor

with a cable-suspended payload. Specifically, we derived a

coordinate-free dynamic model of the system, proved the sys-

tem’s differential flatness properties, and designed controllers

for its subsystems. Through this, we were able to cohesively

apply methods traditionally used for non-hybrid systems work

in this hybrid setting. Additionally, we proposed a trajectory

generation method that, unlike previous works, considers the

behavior of the full hybrid dynamics. We then applied these

methods to designing an aggressive load-transport maneuver.

Finally, we successfully demonstrated this maneuver with

an Asctec Hummingbird quadrotor, which for the first time

experimentally validates the proposed methods across the

complete hybrid system.
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Fig. 9: States over time, load-transport maneuver
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Fig. 10: Load states after release with initial vertical and

horizontal velocity

X. FUTURE WORK

There are a number of possible directions for future work.

Firstly, we must extend these results for the planar system

approximation to the full three-dimensional model. Further, we

wish to eliminate the system’s reliance on the VICON motion

capture system. As a first step, we hope to derive the load state

from a downward camera on the quadrotor before attempting a

full vision-based approach. Additionally, we hope to examine

the case of multiple quadrotors carrying a point-mass or rigid-

body load and develop similar trajectory generation techniques

for such a system.
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APPENDIX A

INTEGRATION OF ACTION INTEGRAL FOR

QUADROTOR-WITH-LOAD SUBSYSTEM

Recall the action integral:

δS =

Z t2

t1

(δW + δL)dt

=

Z t2

t1

(((mQ +mL)ẋL −mQlṗ) · δẋL

+(fRe3 − (mQ +mL)ge3) · δxL) dt

+

Z t2

t1

(
(mQl

2ṗ−mQlẋL) · δṗ

+(mQgle3 − flRe3) · δp) dt

+

Z t2

t1

(
ΩT [I]B · δΩ+M · (RT δR)

)
dt

with variations:

δp = ξ ⇥ p

δR = Rη̂

δṗ = ξ̇ ⇥ p+ ξ ⇥ ṗ

δΩ = Ω̂η + η̇

A. Integrating the xL term

Let:

u = (mQ +mL)ẋL −mQlṗ

du = ((mQ +mL)ẍL −mQlp̈)dt

v = δxL

dv = δẋLdt

Then:

Z t2

t1

(((mQ +mL)ẋL −mQlṗ) · δẋL

+(fRe3 − (mQ +mL)ge3) · δxL) dt

= (((mQ +mL)ẋL −mQlṗ) · δxL)

∣∣∣∣
t2

t1

−

Z t2

t1

(((mQ +mL)ẍL −mQlp̈) · δxL) dt

+

Z t2

t1

((fRe3 − (mQ +mL)ge3) · δxL) dt

=

Z t2

t1

((mQlp̈− (mQ +mL)ẍL

fRe3 − (mQ +mL)ge3) · δxL) dt (108)

B. Integrating the p term

Z t2

t1

(
(mQl

2ṗ−mQlẋL) · δṗ

+(mQgle3 − flRe3) · δp) dt

=

Z t2

t1

⇣
(mQl

2ṗ−mQlẋL) · (ξ̇ ⇥ p+ ξ ⇥ ṗ)

+(mQgle3 − flRe3) · (ξ ⇥ p)) dt

=

Z t2

t1

⇣
(p⇥ (mQl

2ṗ−mQlẋL)) · ξ̇

+
(
ṗ⇥ (mQl

2ṗ−mQlẋL) + p⇥ (mQgle3 − flRe3)) · ξ
)
dt

Let:

u = p⇥ (mQl
2ṗ−mQlẋL)

du = (ṗ⇥ (mQl
2ṗ−mQlẋL)) + (p⇥ (mQl

2p̈−mQlẍL))dt

v = ξ

dv = ξ̇dt

Then:
Z t2

t1

⇣
(p⇥ (mQl

2ṗ−mQlẋL)) · ξ̇

+
(
ṗ⇥ (mQl

2ṗ−mQlẋL)− p⇥ (mQgle3 + flRe3)) · ξ
)
dt

=
(
p⇥ (mQl

2ṗ−mQlẋL) · ξ
) ∣∣∣∣

t2

t1

−

Z t2

t1

(
(ṗ⇥ (mQl

2ṗ−mQlẋL))

+(p⇥ (mQl
2p̈−mQlẍL)) · ξ

)
dt

+

Z t2

t1

(
(ṗ⇥ (mQl

2ṗ−mQlẋL)

+p⇥ (mQgle3 − flRe3)) · ξ) dt

=

Z t2

t1

((
p⇥ (mQgle3 − flRe3 +mQlẍL −mQl

2p̈)
)
· ξ
)
dt

(109)

C. Integrating the R term

Z t2

t1

(
[I]BΩ · δΩ+M(RT δR)

)
dt

=

Z t2

t1

([I]BΩ · (Ω⇥ η + η̇) +Mη̂) dt

=

Z t2

t1

(([I]BΩ⇥ Ω) · η + [I]BΩ · η̇ +M · η) dt

=

Z t2

t1

✓
([I]BΩ⇥ Ω) · η +

d

dt
([I]BΩ · η)

−[I]BΩ̇ · η +M · η
⌘
dt

=

Z t2

t1

⇣
(−Ω⇥ [I]BΩ− [I]BΩ̇ +M) · η

⌘
dt (110)
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D. Simplification of equations of motion

Recall the equations from setting all variations to 0:

mQlp̈− (mQ +mL)ẍL − (mQ +mL)ge3 + fRe3 = 0
(111)

p⇥ (mQgle3 − flRe3 +mQlẍL −mQl
2p̈) = 0 (112)

− Ω⇥ [I]BΩ− [I]BΩ̇ +M = 0 (113)

Taking the cross product of p and Eq. 111:

p⇥ (mQlp̈− (mQ +mL)ẍL − (mQ +mL)ge3 + fRe3) = 0

Adding this to Eq. 112 gives:

−mLp⇥ ẍL −mLgp⇥ e3 = 0 (114)

p⇥ ẍL = −gp⇥ e3 (115)

In addition, differentiating the definition ṗ = ω ⇥ p gives:

p̈ = ω̇ ⇥ p+ ω ⇥ ṗ = 0, (116)

and the last term of Eq. 112 can be rewritten as:

p⇥ p̈ = p⇥ (ω̇ ⇥ p+ ω ⇥ ṗ)

= ω̇(p · p)− p(p · ω̇) + ω(p · ṗ)− ṗ(p · ω)

= ω̇ (117)

Substituting Eqs. 115 and 117 into Eq. 112 gives:

p⇥ (mQge3 − fRe3)−mQgp⇥ e3 −mQlω̇ = 0

mQlω̇ = −fRp⇥ e3 (118)

Now, note the identity:

d

dt
(p · ṗ) = p · p̈+ ṗ · ṗ = 0

p⇥ (p⇥ p̈) = p(p · p̈)− p̈(p · p)

= −(ṗ · ṗ)p− p̈

p̈ = −(ṗ · ṗ)p− p⇥ (p⇥ p̈)

Eq. 111 becomes:

−mQl(ṗ · ṗ)p−mQl(p⇥ (p⇥ p̈))

− (mQ +mL)(ẍL + ge3) + fRe3 = 0 (119)

From Eq. 112, we can solve for:

p⇥ p̈ =
1

mQl
(p⇥ (mQge3 − fRe3 +mQẍL))

Substituting this into Eq. 119:

−mQl(ṗ · ṗ)p− p⇥ (p⇥ (mQge3 − fRe3 +mQẍL))

− (mQ +mL)(ẍL + ge3) + fRe3

= −mQl(ṗ · ṗ)p+ p(p · fRe3)− fRe3 · (p · p)

−mQp⇥ (p⇥ (ge3 + ẍL))

− (mQ +mL)(ẍL + ge3) + fRe3

From Eq. 114, p⇥ (ẍL + ge3) = 0 and we further simplify:

(−mQl(ṗ · ṗ) + p · fRe3)p− (mQ +mL)(ẍL + ge3) = 0

(mQ +mL)(ẍL + ge3) = (p · fRe3 −mQl(ṗ · ṗ))p
(120)

Eqs. 113, 118, and 120 are the equations of motion.

APPENDIX B

DIFFERENTIAL FLATNESS OF QUADROTOR-WITH-LOAD

SUBSYSTEM

Recall the states:

x1 = [xL ẋL p ω IRB
IΩB

B]
T ,

input:

u = [f M]T ,

and proposed flat outputs:

y1 = [xL ψ]T

We have already determined the states:

T = mLkge3 + ẍLk

p =
−(ẍL + ge3)

kẍL + ge3k

Ṫ = −mL(
...
xL · p)

ṗ =
−(mL

...
xL + Ṫp)

T

ω =
mL

T

...
xL ⇥ p

xQ = xL − lp

Further, the equation of motion and its first derivative are:

−Tp−mLge3 = mLẍL

−T ṗ− Ṫp = mL
...
xL

We can differentiate Ṫ to obtain:

T̈ = −mL(x
(4)
L · p+

...
xL · ṗ)

Then, differentiating the equation of motion again:

− T p̈− 2Ṫ ṗ− T̈p = mLx
(4)
L

p̈ =
−(mLx

(4)
L + 2Ṫ ṗ+ T̈p)

T

ω̇ = mL(x
(4)
L ⇥ p+

...
xL ⇥ ṗ)

Repeating this process twice more, we see:

...
T = −mL(x

(5)
L · p+ 2x

(4)
L · ṗ+

...
xL · p̈)

− T
...
p − 3T̈ ṗ− 3Ṫ p̈−

...
Tp = mLx

(5)
L

...
p =

−(mLx
(5)
L + 3T̈ ṗ+ 3Ṫ p̈+

...
Tp)

T

ω̈ = mL(x
(5)
L ⇥ p+ 2x

(4)
L ⇥ ṗ+

...
xL ⇥ p̈)

and:

T (4) = −mL(x
(6)
L · p+ 3x

(5)
L · ṗ+ 3x

(4)
L · p̈+

...
xL ·

...
p)

− Tp(4) − 4
...
T ṗ− 6T̈ p̈− 4Ṫ

...
p − T (4)p = mLx

(6)
L

p(4) =
−(mLx

(6)
L + 4

...
T ṗ+ 6T̈ p̈+ 4Ṫ

...
p + T (4)p)

T
...
ω = mL(x

(6)
L ⇥ p+ 3x

(5)
L ⇥ ṗ+ 3x

(4)
L ⇥ p̈+

...
xL ⇥

...
p)
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This allows us to find the quadrotor states:

ẋQ = ẋL − lṗ

ẍQ = ẍL − lp̈
...
xQ =

...
xL − l

...
p

x
(4)
Q = x

(4)
L − lp(4)

Now, we can find the states R and Ω and the inputs f and

M as:

fRe3 = −mQlp̈+ (mQ +mL)(ẍL + ge3)

= mL(ẍL + ge3) +mQ(ẍQ + ge3)

b3 =
mL(ẍL + ge3) +mQ(ẍQ + ge3)

kmL(ẍL + ge3) +mQ(ẍQ + ge3)k

f = kmL(ẍL + ge3) +mQ(ẍQ + ge3)k

With this value of b3 and ψ from the flat outputs, we can find

R as done for the quadrotor subsystem.

Next, we differentiate the equation of motion and find:

ḟb3 + f(IΩB ⇥ b3) = mQ
...
xQ +mL

...
xL

ḟ = (mQ
...
xQ +mL

...
xL) · b3

We can use this value of ḟ and Eqs. 57 - 61 to solve for IΩB

B
.

Differentiating the equation of motion again:

f̈b3 + 2ḟ
(
IΩB ⇥ b3

)
+ f

(
IαB ⇥ b3 +

IΩB ⇥ (IΩB ⇥ b3)
)

= (mQx
(4)
Q +mLx

(4)
L )

f̈ = (mQx
(4)
Q +mLx

(4)
L ) · b3

− 2ḟ
(
IΩB ⇥ b3

)
− fIΩB ⇥ (IΩB ⇥ b3)

With f̈ , Sec. IV-A describes finding of components of IΩ̇B

B
.

Finally, we find the moment with:

M = IΩB

B ⇥ [I]B
IΩB

B + [I]B
IΩ̇B

B

Note that here, IΩ̇B

B
is a function of f̈ , which is in turn a

function of x
(4)
Q . x

(4)
Q is derived from p(4), which is a function

of the sixth derivative of xL.

APPENDIX C

PROOF OF STABILITY OF QUADROTOR SUBSYSTEM

CONTROLLER

A. Exponential stability of position controller for |eQ(0)| <
⇡
2

Recall Eqs. 86 and 87, which prove the existence of a

Lyapunov function for the attitude dynamics, VQ, that satisfies:

zTQMqzQ  VQ  zTQMQzQ (121)

V̇Q  −zTQWQzQ (122)

Next, recall the definitions of the position controller, given

in Eqs. 82 - 85:

ex = xQ − xd
Q, ėx = ẋQ − ẋd

Q

Fd = −Kpex −Kdėx +mQ(ge3 + ẍd
Q)

fd = Fd · b3

bd
3 =

Fd

kFdk
,

and the bounds:

|eQ(0)| <
π

2
kex(0)k < ex,max

kmQ(ge3 + ẍd
Q)k  Y

Consider a constant c > 0 and the function:

Vx =
1

2
Kpex · ex +

1

2
mQėx · ėx + cex · ėx (123)

Define zx = [kexk kėxk]
T . Eq. 123 satisfies:

zTxMxzx  Vx  zTxMXzx, (124)

where:

Mx =


Kp

2 − c
2

− c
2

mQ

2

]

MX =


Kp

2
c
2

c
2

mQ

2

]

Assume Kp > 0, Kd > 0. To ensure that Mx and MX are

positive definite, we need:

detMx = detMX =
mQKp

4
−
c2

4
> 0

c <
p
mQKp (125)

Next, take the derivative of Eq. 123:

V̇x = Kpex · ėx + cėx · ėx + ëx · (mQėx + cex) (126)

Using the equation of motion, the error dynamics are:

mQëx = mQ(ẍQ − ẍd
Q)

= −mQge3 + fdb3 −mQẍ
d
Q

= −mQge3 −mQẍ
d
Q + Fd + fdb3 − Fd (127)

Substituting in the designated F from the control law:

mQëx = −mQge3 −mQẍ
d
Q −Kpex −Kdėx

+mQ(ge3 + ẍd
Q) +X

= −Kpex −Kdėx +X, (128)



18

where:

X = fdb3 − Fd

= (Fd · b3)b3 − kFdkbd
3

= kFdk((bd
3 · b3)b3 − bd

3)

Substituting the definition of ëx from Eq. 128 into Eq. 126:

V̇x = Kpex · ėx + cėx · ėx

+ (−
Kp

mQ

ex −
Kd

mQ

ėx +
X

mQ

) · (mQėx + cex)

= −(Kd − c)ėx · ėx −
cKp

mQ

ex · ex

−
cKd

mQ

ex · ėx +X · (ėx +
c

mQ

ex)

Applying the Cauchy-Schwartz Inequality, |a·b|  kakkbk:

V̇x  −(Kd − c)kėxk
2 −

cKp

mQ

kexk
2 −

cKd

mQ

kexkkėxk

+ kXk(kėxk+
c

mQ

kexk) (129)

From the definition of X:

kXk  kFdkk(b3 · b
d
3)b3 − bd

3k

= k −Kpex −Kdėx +mQ(ge3 + ẍd
Q)k

k(b3 · b
d
3)b3 − bd

3k

 (Kpkexk+Kdkėxk+ kmQ(ge3 + ẍd
Q)k)

k(b3 · b
d
3)b3 − bd

3k (130)

Note that:

k(b3 · b
d
3)b3 − bd

3k = kb3 ⇥ (b3 ⇥ bd
3)k

= kb3kkb3 ⇥ bd
3k sin(θe)

= kb3kkb3kkb
d
3k sin(|φQ − φd

Q|) sin(θe)

θe is the angle between b3 and b3 ⇥ bd
3. Since b3 ⇥ bd

3 will

be orthogonal to b3, sin(θe) = 1. We see then that:

k(b3 · b
d
3)b3 − bd

3k = sin(|eQ|)

We assume kmQ(ge3+ ẍd
Q)k  Y . This allows us to simplify

Eq. 130:

kXk  (Kpkexk+Kdkėxk+ Y ) sin(|eQ|) (131)

Substituting this into Eq. 129 gives:

V̇x  −(Kd − c)kėxk
2 −

cKp

mQ

kexk
2 −

cKd

mQ

kexkkėxk

+ (Kpkexk+Kdkėxk+ Y ) sin(|eQ|)(kėxk+
c

mQ

kexk)

(132)

Since we already know that the attitude dynamics are expo-

nentially stable, we know that eQ will always be decreasing.

We have assumed that |eQ(0)| < ⇡
2 . Thus, sin(|eQ|) 

sin(|eQ(0)|) ⌘ α < 1. We also assume kexk < ex,max. Using

this in Eq. 133:

V̇x  −(Kd(1− α)− c)kėxk
2 −

cKp

mQ

(1− α)kexk
2

−
cKd

m
(1− α)kexkkėxk+Kpex,max sin(|eQ|)kėxk

+ Y sin(|eQ|)(kėxk+
c

mQ

kexk)

Using the trigonometric property: | sin(θ)|  |θ|, we can

further simplify:

V̇x  −(Kd(1− α)− c)kėxk
2 −

cKp

mQ

(1− α)kexk
2

−
cKd

m
(1− α)kexkkėxk+Kpex,max|eQ|kėxk

+ Y |eQ|(kėxk+
c

mQ

kexk)

Define zx and zQ as before. Then:

V̇x  −zTxWxzx + zTxWxQzQ, (133)

where, as stated in Eqs. 88 and 89 :

WxQ =


cY
mQ

0

Y +Kpex,max 0

]

Wx =

"
cKp

mQ
(1− α) 1

2
cKd

mQ
(1− α)

1
2
cKd

mQ
(1− α) Kd(1− α)− c

#

To ensure that Wx is positive-definite for positive α,Kp, and

Kd, we require:

cKp

mQ

(1− α) > 0, c > 0 (134)

Kd(1− α)− c > 0, c < Kd(1− α) (135)

and:

detWxQ =
cKp

mQ

(1− α)(Kd(1− α)− c)−
1

4
(
cKd

mQ

(1− α))2

= c

✓
KpKd

mQ

(1− α)2

−c

 
Kp

mQ

(1− α) +
K2

d

4m2
Q

(1− α)2

!!
> 0

c <
4mQKpKd(1− α)

4mQKp +K2
d(1− α)

(136)

Finally, consider the Lyapunov function:

V = VQ + Vx (137)

Using Eqs. 121 and 124, we see that:

zTQMqzQ + zTxMxzx  V  zTq MQzq + zTxMXzx,

and V is positive-definite.

Differentiating the proposed Lyapunov function gives:

V̇ = V̇Q + V̇x (138)

Using Eqs. 122 and 133, we see that:

V̇  −zTQWQzQ + zTxWxQzQ − zTxWxzx
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Conditions in Eqs. 125, 135, and 136 tell us that for positive

c,α,Kp,Kd, the matrices Mx,MX ,Wx will be positive-

definite if:

c < min

⇢p
mQKp,Kd(1− α),

4mQKpKd(1− α)

4mQKp +K2
d(1− α)

}

Further:

V̇  −λm(WQ)kzQk
2 + kWxQk2kzxkkzQk

− λm(Wx)kzxk
2

Here, λm(·) denotes the minimum eigenvalue of the matrix.

Since WQ and WX are positive-definite, their minimum eigen-

values are positive non-zero. To ensure that V̇ is negative-

definite, we need:

−V̇ ≥ λm(WQ)kzQk
2 − kWxQk2kzxkkzQk+ λm(Wx)kzxk

2

=
1

4λm(WQ)

(
4λ2

m(WQ)kzQk
2

−4λm(WQ)kWxQk2kzxkkzQk+ kWxQk
2kzxk

2
)

+ λm(Wx)kzxk
2 −

kWxQk
2kzxk

2

4λm(WQ)

=
(2λm(WQ)kzQk − kWxQkkzxk)

2

4λm(WQ)

+

✓
λm(Wx)kzxk

2 −
kWxQk

2kzxk
2

4λm(WQ)

◆
> 0

The first quadratic term will always be positive. Thus, we only

need: ✓
λm(Wx)kzxk

2 −
kWxQk

2kzxk
2

4λm(WQ)

◆
> 0

λm(Wx) >
kWxQk

2

4λm(WQ)

These are the conditions given in Eqs. 90 and 91. If these

are met, the origin of the error states [eQ ėQ ex ėx]
T is

exponentially stable. Note that the position error ex,max can

be arbitrarily large, as long as conditions on c,Kp,Kd can

still be met.

B. Exponential attractiveness of position controller for

|eQ(0)| ≥
⇡
2

Next, we wish to show that when |eQ(0)| ≥
⇡
2 , the origin of

the error states [eQ ėQ ex ėx]
T is exponentially attractive.

We know that the attitude dynamics are exponentially stable,

so for any initial condition, there exists a time t∗ after which

|eQ| <
⇡
2 and the full error dynamics become exponentially

stable. We need to further guarantee that the error state zx =
[ex ėx]

T remains bounded in [0, t∗].
Consider the Lyapunov function:

Vx2
=

1

2
kexk

2 +
mQ

2
kėxk

2 (139)

This function is positive definite. Additionally, note that:

kexk 
p
2Vx2

(140)

kėxk 

s
2

mQ

Vx2
(141)

Taking the derivative of the proposed function:

V̇x2
= ex · ėx +mQėx · ëx (142)

Recall that from the equations of motion, the error dynamics

are:

mQëx = mQẍ−mQẍ
d

= −mQge3 + fb3 −mQẍ
d

Substituting this into the derivative of the Lyapunov function

gives:

V̇x2
= ex · ėx + ėx · (mQge3 + fb3 −mQẍ

d)

 kexkkėxk+ kėxkk −mQge3 + fb3 −mQẍ
dk

 kexkkėxk+ kėxkY + kėxk|f |

= kexkkėxk+ kėxkY+

kėxkk −Kpex −Kdėx +mQge3 +mQẍ
dk

 (1 +Kp)kexkkėxk+ 2kėxkY +Kdkėxk
2

Using Eqs. 140 and 141:

V̇x2
 2(1 +Kp)

s
1

mQ

Vx2
+ 2Y

s
2

mQ

Vx2
+ 2

Kd

mQ

Vx2

= β1Vx2
+ β2

p
Vx2

,

where:

β1 = 2(1 +Kp)

s
1

mQ

+ 2Kd

β2 = 2Y

s
2

mQ

When Vx2
≥ 1,

p
Vx2

 Vx2
. Assume there exists a time

interval [ta, tb] ⇢ [0, t∗] where Vx2
≥ 1. In this interval:

V̇  (β1 + β2)Vx2
(143)

Recall the Comparison Lemma: give the differential equation

u̇ = f(t, u), where f is continuous in t and locally Lipschitz

in u in a domain D and time [t0, t1), with initial condition

u(t0) = u0. If a second continuous function v(t) satisfies

D+v(t)  f(t, v), v(t0)  u0, on the domain D and time

[t0, t1), then v(t)  u(t) for all [t0, t1) [10].

Applying this to Eq. 143 gives:

Vx2
(t)  Vx2

(ta)e
(β1+β2)(t−ta)

For any time interval [ta, tb] ⇢ [0, t∗] when Vx2
≥ 1, Vx2

is

bounded, and therefore, the error states are bounded. Thus, for

the remaining time intervals when Vx2
< 1, Vx2

is bounded

as well, since as soon as the function increases to 1, it will

become bounded. Thus, the error states are bounded for all

of [0, t∗] and the origin of the error states is exponentially

attractive.
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