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Abstract— In this work, we consider the labeled multi-robot
planning problem. In this paradigm, a team of robots at
fixed start positions must navigate to pre-specified and non-
interchangable goal positions. While many algorithms have
been proposed for finding optimal solutions to this problem,
most methods assume that the robots are kinematic agents,
whereas in reality, robots often have high-order dynamics that
must be respected by their trajectories. Here, we propose a
centralized method for generating trajectories for teams of
robots with general nth-order dynamics navigating to labeled
goals. Our algorithm is safe and complete and additionally
allows for decoupled optimization of each robot’s trajectory
as a Quadratic Program with linear constraints. We present
simulation results for teams of up to 20 robots.

I. INTRODUCTION

Recent years have seen a marked increase of interest

in using autonomous multi-robot teams to solve complex

tasks. Examples of such initiatives include automated ware-

houses [1] and drone delivery [2]. In these settings, robots are

deployed in an obstacle-free space from given start locations

and must travel to assigned goal locations to perform some

task. This has traditionally been referred to as the labeled
multi-robot planning problem. This is in contrast with the

unlabeled planning problem, where goal locations can be

freely interchanged between robots, and the k-color plan-

ning problem, where goal locations interchangeable between

robots within group designations.

Centralized approaches to the labeled planning problem

attempt to find solutions by searching the Cartesian product

of all robots’ state spaces. While methods have been suc-

cessful in optimizing single-robot path planning algorithms

for this higher-dimensional space [3][4], the dimensionality

of this joint state space nonetheless grows exponentially

with the size of the team and these algorithms quickly

become computationally impractical. As a result, other types

of centralized approaches have emerged, including rule-based

algorithms [5] and Mixed Integer Programming [6]. These

approaches are generally optimal, safe, and complete.

However, these algorithms often still cannot be scaled to

large teams. In fact, recent results prove that finding optimal

solutions to the labeled multi-robot planning problem on

undirected graphs is NP-hard [7] [8]. This suggests that an

algorithm that is safe and complete, but suboptimal, might

be sufficient. In fact, a number of algorithms have proposed

splitting the planning problem into multiple centralized sub-

problems [9] [10] to improve computational efficiency.
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In addition, planning algorithms often model robots as

kinematic agents. In reality, robots are often governed by

higher n

th

-order dynamics. Commanding a dynamic robot to

instantaneously change its velocity can result in large errors

in trajectory tracking and collisions with neighbors. One way

this issue has been addressed is with reactive approaches. For

example, van den Berg et al. [11] use “Reciprocal Velocity

Obstacles” to navigate agents around each other. This method

has been extended to arbitrary, non-linear dynamics, how-

ever, has no safety or completeness guarantees. Pallottiono et
al. [12] propose a control policy for decentralized navigation

of holonomic robots. However, the control policy is specific

to a single, albeit commonly used, dynamic model and not

generalizable to higher-order dynamics. Algorithms to safely

navigate aircrafts past each other have also used Mixed

Integer Programming formulations [13] [14]. However, these

methods must concatenate the unknown coefficients of all

robots’ trajectories into one decision vector and as a result,

are often not scalable to larger teams.

In this work, we adopt the terminology “labeled multi-

robot trajectory generation problem” to explicitly express

that we are concerned with robots’ dynamics. In previous

work, we introduce OMP CHOP, a safe and complete cen-

tralized labeled planning algorithm for teams of kinematic

robots [15]. Here, we extend our previous work to propose a

new method to generate smooth, safe, optimal trajectories for

robots. In particular, we formulate the trajectory generation

problem as a Quadratic Program (QP). Quadratic Program-

ming approaches have been used extensively in the single-

robot domain [16] [17] [18] and have been shown to be fast

enough for real-time trajectory computation.

Our proposed method has three advantages. First, the

resulting trajectories are optimal with respect to robots’

dynamics. Next, our algorithm is safe and complete. Finally,

unlike previous optimization-based approaches, we do not

require joint optimization of all robots’ trajectories. Instead,

we formulate constraints such that each robot solves a QP

that is decoupled from its neighbors.

The remainder of the paper will proceed as follows.

Section II formally defines the problem. Section III intro-

duces our approach, which involves a motion planning and

trajectory generation step. Section IV describes the motion

planning algorithm, while Section V presents the trajectory

generation method. Section VI prove algorithmic guaran-

tees and Section VII analyzes the method’s computational

complexity. Finally, Section VIII presents simulation results

while Section IX discusses our conclusions.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



II. PRELIMINARIES

Consider a team of N robots, indexed i 2 [1, N ], operating

in an obstacle-free two-dimensional space. Let x

i 2 R2

denote the position of robot i. We model robots as disks:

B(xi) = {x 2 R2|kx� x

ik2  R} (1)

We assume robots have n

th

-order dynamics :

d

n

dt

n

x

i(t) = u

i(t) (2)

We use subscripted variables x

i

x

and x

i

y

to denote the x and

y components of x

i

, respectively. Each robot has state:

X 2 R2n =


x

i

d

dt

x

i

...

d

n�1

dt

n�1
x

i

�
T

(3)

Each robot also has a start position s

i 2 R2
and a fixed

goal position g

i 2 R2
. Assume the positions satisfy:

ksi � s

jk2 � 2
p
2R

kgi � g

jk2 � 2
p
2R 8i, j 2 [1, N ], i 6= j (4)

�

i(t) : R! R2
denotes the trajectory of robot i. A set of

trajectories �(t) for the team is safe if:

B(�i(t)) [ B(�j(t)) = ;, 8i, j 2 [1, N ], i 6= j, t 2 [t, t
max

]
(5)

Let t

i

f

denote the end time of robot i’s trajectory and t

max

=
max

N

i=0t
i

f

. Note robots can arrive at their goals at different

times. We assume robots disappear from the workspace after

they reach their goal. This is analogous to a robot landing

or moving into a building to complete its task.

We define the labeled multi-robot trajectory generation
problem as follows: given a set of start positions s and fixed

goal assignments g, find a set of collision-free trajectories

�(t) that navigate each robot from its start to goal position.

We will drop variables’ subscripts to refer to the set of

variables for the team. For example, s denotes the set of all

start positions.

III. ALGORITHM OVERVIEW

Throughout this paper, we will refer to the problem

illustrated in Fig. 1 as a running example. Robots’ start

positions are represented as circles and their corresponding

goal positions are illustrated as stars of the same color.

Fig. 1: Example problem. Robots must navigate from start

positions, circles, to designated, non-interchangeable goals,

stars of the same color.

(a) Motion plans, M. (b) Trajectories, �(t)

Fig. 2: Example motion plan and trajectory solutions for the

labeled multi-robot trajectory generation problem. Robots

must navigate from start positions, circles, to designated,

non-interchangeable goals, stars of the same color.

Our proposed algorithm contains two steps. In the motion
planning step, we find a motion plan Mi = {T i

,x

i

des

} for

each robot. This motion plan will serve as a set of waypoint

constraints from which a safe trajectory can be derived.

We define T i = {ti0, ti1, ..., tim
i

} as a set of

times we will refer to as breakpoint times. x

i

des

=
{xi

des,0,x
i

des,1, ...,x
i

des,m

i

} is the set of positions, or way-
points, at which we want robot i to arrive at times t

j

. Let m

i

denote the number of elements in robot i’s breakpoint times

set. Robots do not have to have equally sized breakpoint

time sets. Fig. 2a illustrates a motion plan for our example

problem. We use straight-line paths to represent the order of

waypoints in each robot’s motion plan. The construction of

M will be described in Section IV.

In the trajectory generation step, we use the information

in M to formulate a Quadratic Program (QP) optimization

problem for each robot. The solution to each QP will be the

coefficients of a trajectory, �

i(t), for each robot. The set �(t)
will be safe, as well as smooth and optimal with respect to

the robots’ dynamics. Fig. 2b illustrates solution trajectories

derived from the motion plan in Fig. 2a. This process will

be described in Section V.

IV. MOTION PLANNING

In this section, we present the motion planning step of our

algorithm. We first present a solution for kinematic robots,

then extend that solution to robots with n

th

-order dynamics.

A. Kinematic Robots
Our proposed algorithm builds off the OMP CHOP [15]

algorithm. OMP CHOP, outlined in Algorithm 2, is a cen-

Algorithm 1 M = OMP CHOP(s,g, R)

1: for i 2 [1, N ] do
2: T i = {t0, t0 + �(s,g)}
3: x

i

des

= {s,g}
4: Mi = {T i

,x

i

des

}
5: end for
6:  (t) = Get Trajectory(M)

7: while  (t) is not safe do
8: M = Resolve First Collision(s,g,M, (t))
9:  (t) = Get Trajectory(M)

10: end while



tralized, safe, and complete algorithm for solving the labeled

multi-robot planning problem for kinematic robots.

The algorithm begins by allowing each robot to take a

constant-velocity straight-line trajectory to its goal. This is

reflected in Lines 1 - 5. Here, � is a heuristic function that,

given start and end positions, x0 and x

f

, respectively, will

return an estimated time for the robot to travel between

the two points. For example, for robots with a maximum

velocity, a possible heuristic function is:

� =
kx0 � x

f

k2
v

max

Line 6 translates the each motion plan Mi

into a trajectory

 

i

. A kinematic robot can simply travel at constant velocity

between waypoints to arrive at the proper breakpoint time.

Dropping superscripts i for simplicity, this trajectory is:

 (t) =
8
>>><

>>>:

x

des,0 +
t�t0
t1�t0

(x
des,0 � x

des,1) t0  t  t1

x

des,1 +
t�t1
t2�t1

(x
des,1 � x

des,2) t1  t  t2

...

x

des,m�1 +
t�t

m�1

t

m

�t

m�1
(x

des,m

� x

des,m�1) t

m�1  t  t

m

(6)

Lines 7 - 10 iteratively resolves collisions between

robots’ trajectories by constructing Circular HOlding Pat-
terns (CHOPs), roundabout-like maneuvers that direct collid-

ing robots safely past each other, and adding them to robots’

motion plans. This process continues until the trajectories

given by Eq. 6 for the current motion plan are safe.

Fig. 3 illustrates this algorithm for our example problem.

Panel 1 shows the initial straight-line trajectories. A collision

between the red and blue robots is detected. A CHOP, defined

by a set of circularly-distributed intermediate waypoints, is

constructed. The CHOP’s intermediate waypoints are pic-

tured as black squares in Panel 2. The red and blue robots

visit these waypoints synchronously to move past each other.

Panels 3 and 4 illustrate the resolution of the next collision

between the purple and green robots. However, as shown

in Panel 5, the purple and green robots’ CHOP results in

a collision between the yellow and purple robots. Thus, in

Panel 6, the next iteration refines the solution such that the

yellow, purple, and green robots execute a single CHOP.

Algorithm details, as well as safety and completeness

proofs, can be found in [15]. The algorithm output is a

1

4

2 3

5 6

Fig. 3: OMP CHOP algorithm applied to example problem.

motion plan M. This motion plan’s corresponding trajectory

set is safe by construction. We will refer to it as our nominal
solution and denote it �

nom

(t).

B. General nth-Order Robots
We wish to first extend the OMP CHOP algorithm to plan

for n

th

-order robots. Consider the problem:

 (t) = argmin
 (t)

Z
t

f

0
k ̇(t)k22dt

subject to:  (t0) = x0,  (tf ) = x

f

(7)

The solution is the straight-line trajectory:

 (t) = x0 +

✓
t� t0

t

f

� t0

◆
(x

f

� x0) (8)

Eq. 8 gives the trajectories used by kinematic robots in

�

nom

(t) to travel between waypoints in their motion plans.

Now, consider the analogous optimization problem:

 (t) = argmin
 (t)

Z
t

f

0
k (n)(t)k22dt

subject to:  (t0) = x0,  (tf ) = x

f

 

(j)(t0) = 0,  (j)(t
f

) = 0 8j = 1, ..., n� 1
(9)

Turpin et al. [19] show the solution is:

 (t) = x0 + �(t)(x
f

� x0) (10)

�(t) is a polynomial �(t) =
P2n�1

i=0 ↵

i

t

i

such that �(0) = 0
and �(t

f

) = 0. The minimization problem in Eq. 9 contains

exactly 2n boundary conditions. We can use these to solve

for the coefficients of �(t). The solution is a straight-line

trajectory with a smooth, non-constant velocity profile. We

will refer to boundary conditions were the derivatives 1
through n � 1 are 0 at both endpoints as homogeneous
boundary conditions.

We can easily apply the OMP CHOP algorithm to n

th

-

order robots by replacing Eq. 6 with:

 (t) =
8
>>><

>>>:

x

des,0 + �(t)(x
des,0 � x

des,1) t0  t  t1

x

des,1 + �(t)(x
des,1 � x

des,2) t1  t  t2

...

x

des,m�1 + �(t)(x
des,m

� x

des,m�1) t

m�1  t  t

m

(11)

We can replace the heuristic function � to consider limits

in higher derivatives. The OMP CHOP will run as in the

kinematic case and return a motion plan, M. Again, Eq. 11

corresponding to M is a safe nominal solution, �

nom

(t).

V. TRAJECTORY GENERATION

While the nominal trajectory set is safe, it is inefficient.

The homogenous boundary conditions dictate that each robot

must accelerate from and stop at rest when moving between

each pair of waypoints. In this section, we present a method

to generate smoother safe trajectories from M.



A. Quadratic Program Formulation
From each Mi(t) and its associated breakpoint set T i

,

we can define a global breakpoint set, T g = [t0, t1, ..., tm].
T g

the sorted union of all times from all T i

, i 2 [1, N ].
For example, given breakpoint sets T 1 = [0, 1, 2] and T 2 =
[0, 1.5, 2, 2.5], T g = [0, 1.5, 2, 2.5].

For each robot, we wish to find a piecewise polynomial

�

i(t) = [xi(t) y

i(t)]T , where:

x

i(t) =

8
>>><

>>>:

P2n�1
j=0 c

i

j,0,xt
s

, t0  t < t1P2n�1
j=0 c

i

j,1,xt
s

, t1  t < t2

...

P2n�1
j=0 c

i

j,m�1,xt
s

, t

m�1  t  t

m

(12)

y

i(t) is defined analogously. �

i(t) is optimal with respect to

the robots’ dynamics if it solves the optimization problem:

�

i(t) = argmin
�

i(t)

Z
t

m

0
k d

n

dt

n

�

i(t)k22dt (13)

subject to:

1) Waypoint constraints: �

i(0) = s

i

, �

i(t
m

) = g

i

,

d

k

dt

k

�

i(0) = 0,

d

k

dt

k

�

i(t
m

) = 0 8k = [1, n� 1].
2) Continuity constraints: �

i(t) is at least Cn�1
.

3) Collision avoidance constraints: The set �(t) is safe.

Let the decision vector, c

i

, contain the unknown trajectory

coefficients:

c

i =
⇥
c

i

0,0,x c

i

1,0,x ... c

i

2n�1,0,x c

i

0,1,x c

i

1,1,x ...

c

i

2n�1,m�1,x c

i

0,0,y c

i

1,0,y ... c

i

2n�1,m�1,y

⇤
T

(14)

For any n, the cost in Eq. 13 is quadratic:

J

i =

Z
t

m

0
k d

n

dt

n

�

i(t)k22dt = (ci)TQc

i

(15)

The waypoint constraints can easily be written in linear

matrix form A

w

c

i = b

w

. To achieve the desired continuity,

we impose constraints of the form:

d

k

dt

k

2n�1X

j=0

c

i

j,s,x

t

j

m�1 =
d

k

dt

k

2n�1X

j=0

c

i

j,s+1,xt
j

m�1 (16)

8s 2 [0,m� 2], k 2 [0, n� 1]

These are also linear constraints of the form A

c

c

i = b

c

. Thus,

we can describe all waypoint and continuity constraints using

the linear matrix constraint A

eq

c

i = b

eq

.

B. Collision-Avoidance Constraints
The set �(t) is safe if:

||�i(t)� �j(t)||2 � 2R 8i, j 2 [1, N ], i 6= j (17)

Eq. 17 is a coupled, non-convex, quadratic equation. We

propose an alternate approach to formulate the collision

avoidance constraints as decoupled, linear constraints. For

each time interval in the global breakpoint set, we:

1) Partition the available free space into N disjoint convex

spaces.

!"($%&,($%%))+ = -"($%&,($%%))

(a) Separating hyperplane.

R!"($%&,($%%))+ = -"($%&,($%%)) − /

(b) Shift of separating hyperplane to-

wards red robot.

Fig. 4: Illustration of construction of constraint hyperplane.

2) Constrain the trajectory of each robot to a designated

convex space.

To begin, recall the Separating Hyperplane Theorem: for

two nonempty, disjoint convex sets, 9a,b such that ax  b

for all points in one set and a

T

x � b for all points in the

other. ax = b is the separating hyperplane [20].

Given any time interval [t
s

, t

s+1], each robot’s nominal

path is a line segment from x

i

des,t

s

to x

i

des,t

s+1
, a convex set

in R2
. Assume robots’ paths are disjoint. Then, there exists

N�1 separating hyperplanes, a

(i,j)
s

x = b

(i,j)
s

, between robot

i and its neighbors j. Fig. 4a shows this for the red and green

robots during interval 0 of our running example.

We can shift this hyperplane by R towards robot i’s path to

create a constraint hyperplane for robot i. Fig. 4b illustrates

this shifted plane, which in our example, is defined by:

a

(i,j)
s

x = b

(i,j)
s

�R

Assume the minimum distance between robot i and j’s paths

is d

min

� 2R. Robot i’s path is contained in the half-plane:

a

(i,j)
s

x  b

(i,j)
s

�R (18)

and robot j’s path is contained in the half-plane:

a

(i,j)
s

x  �(b(i,j)
s

+R) (19)

We can find an equation of the form Eq. 18 or Eq. 19

for robot i with respect to each neighbor. The feasible

region defined by the intersection of these half-planes will

be convex, disjoint from the feasible region of all neighbors,

and contain robot i’s nominal path. Fig. 5 illustrates two of

the red robot’s feasible regions for our running example.

To guarantee collision-avoidance without explicit knowl-

edge of neighbors’ trajectories, we require each robot’s

(a) First time interval. (b) Second time interval.

Fig. 5: Construction of feasible convex regions for red robot.



smoothed trajectory segment to also be within this feasible

region. Previous approaches enforced this type of contain-

ment constraint for polynomials by enforcing the set of half-

plane inequality constraints at sample times along the trajec-

tory. However, this allows the trajectory to move outside the

convex region in between samples [16]. Instead, we adopt

the method in Flores [18].

Consider the Bernstein basis form of a polynomial:

p(t) =
PX

j=0

p

j

B

j

(t) (20)

The basis functions are B

j

(t) =
�
P

j

�
t

j(1 � t)P�j

. The

coefficients p

j

= [p
j,x

p

j,y

]T are control points. Let p

i

be

a vector containing control points for all segments of �

i(t):

p

i = [p0,0,x p0,0,y ... p2n�1,m�1,x p2n�1,m�1,y] (21)

The power and Bernstein basis coefficients are related by the

constant linear equation p

i = Tc

i

.

Bernstein basis curves exhibit a well-known convex hull
properly: p(t) 2 R2

will be contained entirely within the

convex hull defined by its control points [21]. A trajectory

segment can be constrained to a desired convex region by

constraining only the control points of its Bernstein basis

representation. Eqs. 18 - 19 become linear constraints:

a

(i,j)
s

Tc

i  b

(i,j)
s

�R (22)

a

(i,j)
s

Tc

i  �(b(i,j)
s

+R) (23)

A trajectory of degree 2n � 1 has 2n control points. Thus,

at interval s with respect to neighbor j, robot i will have 2n
inequality constraints. We concatenate the constraints with

respect to all neighbor over all time intervals to get the linear

matrix inequality A

ineq

c

i  b

ineq

.

In essence, we partition the free space such that a convex

portion is designated to each robot. We then constrain each

robot to generate a trajectory that smoothly moves through

its dedicated series of convex regions. Each robot’s path

from [t
s

, t

s+1] will share an endpoint with its path from

[t
s+1, ts+2]. This ensures the constraint regions for consecu-

tive time intervals will overlap, making a continuous trajec-

tory feasible. In shifting each hyperplane towards each robot,

we account for the robots’ finite extent. Further, note we do

not require trajectories to pass exactly through intermediate

waypoints, allowing robots to smooth their trajectories within

its feasible region. Finally, note the nominal trajectory set,

�

nom

(t), satisfies all inequality constraints.

C. Full Planning Algorithm
Algorithm 2 presents our complete multi-robot trajectory

generation algorithm. It addresses a number of details.

Recall we assumed sufficient separation between robots’

paths. However, M does not guarantee this separation.

�

nom

(t) can contain intervals in which two robots’ paths

intersect, but do not collide because of their time pa-

rameterizations. To address this, Line 4 defines the state
constraint set, which begins with waypoint and derivative

constraints only at the trajectory’s endpoints. Line 5 defines

the inequality constraint set, which begins empty. For time

intervals in which a robot cannot not successfully construct

half-plane constraints with all neighbors, we add waypoint

and homogeneous boundary conditions (BC) constraints at

that path’s endpoints to the state constraint set. This dictates

that the robot must follow the safe, straight-line nominal

trajectory for that time interval.

Further, the QP could fail to have a solution. In this

situation, robots travel along their nominal solution, �

i

nom

(t).
Since the nominal solution also satisfies the expected in-

equality constraints, one robot can default to its nominal

solution while its neighbors generate smooth trajectories.

VI. SAFETY AND COMPLETENESS GUARANTEES

The trajectory set returned by Algorithm 2 will always

be safe. Consider any pair of robots i and j in any time

interval of the global breakpoint set. If both robots follow

smooth trajectories generated by their QP, the trajectories

must satisfy the collision-avoidance constraints and therefore

be safe. If both robots follow their nominal straight-line tra-

jectories, their trajectories are collision-free by virtue of the

construction of their motion plans. Suppose robot i follows a

Algorithm 2 � = Multi-Robot Trajectory Generation(s,g)

1: M OMP CHOP(s,g, R, n)

2: �

nom

(t) nominal solution from M
3: for all robots i 2 [1, N ] do
4: X

i

des

= {�i(0) = s

i

, �

i(t
m

) = g

i

, homogenous BC

at 0 and t

m

}
5: [A

ineq

, b

ineq

] = ;
6: for all time intervals [t

s

, t

s+1] in T g do
7: ineq success = TRUE

8: for all neighbors j 2 [1, N ], j 6= i do
9: d

min

 minimum distance between paths of

robots i and j during [t
s

, t

s+1]
10: if d

min

< 2R then
11: ineq success = FALSE

12: end if
13: end for
14: if ineq success = TRUE then
15: [A

ineq

, b

ineq

]  half-plane constraints for all

neighbors

16: else
17: X

i

des

 {�i(t
s

) = x

i

des,s

, �

i(t
s+1) = x

i

des,s+1,

homogenous BC at t

s

and t

s+1 }
18: end if
19: end for
20: [A

eq

, b

eq

]  waypoint constraints from X

i

des

, conti-

nuity constraints

21: [success, �i
qp

(t)] = Solve Quadratic Program

22: if success then
23: return �

i

qp

(t)
24: else
25: return �

i

nom

(t)
26: end if
27: end for



smooth trajectory and robot j follows its nominal trajectory.

Since robot i was able to successfully smooth its trajectory,

it must have been able to find constraint hyperplanes with

respect to all its neighbors, including robot j. Thus, robot

j must also be able to define a constraint hyperplane with

respect to robot i. Robot i’s smooth trajectory and robot j’s

nominal trajectory will both be contained in their respective

corresponding half-planes and therefore be safe. This rea-

soning applies to all pairs of robots across all time intervals,

thus, the trajectory set returned by Algorithm 2 is safe.

Further, Algorithm 2 is complete. The OMP CHOP al-

gorithm is complete and will always return a safe motion

plan [15]. Thus, robots will always at least have a safe

nominal solution �

i

nom

(t).

VII. COMPUTATIONAL COMPLEXITY

In this section, we will focus on the complexity of the

trajectory generation QP. Suppose the problem has N robots

with n

th

-order dynamics, the global breakpoint set has m

intervals, and half-plane constraints are found at p time

intervals. The resulting QP has:

• 4mn variables in the decision vector

• n(m� 1) continuity constraints

• 2n+ (m� p)(2n) waypoint constraints

• (N � 1)(2n)(p) collision-avoidance constraints

The problem scales with both m and N . The value of m is

complicated to quantify. It is determined by the motion plan

and increases as robots need to enter more CHOPs to reach

their goals. This depends directly on the configuration of

the start and goal locations, however, generally speaking, m

will increase as N increases. Thus, QP complexity is dictated

strongly by the number of robots in the team.

VIII. EXPERIMENTAL RESULTS

We implemented a non-optimized version of our algorithm

on a 2.5 GHz Intel Core i7 2015 Macbook Pro in Matlab

2015, using CPLEX as the QP solver. Fig. 6 illustrates

two sample problems and their solutions. We use circles

to represent start positions and stars of the same color to

represent corresponding goals. Figs. 6a and 6c show the

nominal solution. Here, black circles represent waypoints in

the motion plan; from these, we can see the locations of

the constructed CHOPs. Figs. 6b and 6d show the optimal

trajectories. In Fig. 6b, the trajectories of the two outer robots

are smoothed, however, the two inner robots continue to

follow their nominal trajectories. Here, robots have 4th order

dynamics and radii of 1 m. In Fig. 6d, all CHOPs become

smooth trajectories. Here, n = 2, R = 0.6 m.

We further explore the effects of a number of parameters.

Table I summarizes the computational performance.

A. Effect of Number of Robots
We first explore the effect of the team’s size on computa-

tional performance. We generated a set of 20 of start and goal

position assignments. We then generated smaller test sets by

randomly selecting a subset of assignment pairs from the

previous problem. Here, n = 2 and R = 0.6 m.

Table I presents our results. As expected from our com-

plexity analysis, larger teams demand more computation

time. Further, the time required for trajectory generation

increases faster than required planning time. This is reason-

able, as a larger team will increase the number of collision

avoidance constraints at each time interval by a constant,

while in the motion planning step, each robot needs to plan

CHOPs only with neighbors it collides with. It takes our

algorithm about 8 s to solve a problem with 20 robots.

B. Effect of Order of Dynamics
Next, we explore the effects of the order of the robots’

dynamics. We solve the 7-robot problem shown in Fig. 7 for

robots with 1st through 4th order dynamics, R = 0.7 m.

Fig. 7a pictures the paths taken by robot type. The

nominal trajectories in each case are identical to the 1st-order

robots’ trajectories, colored purple. However, after trajectory

generation, each robot type takes trajectories that are optimal

for their dynamics. Fig. 7b shows the velocity profiles of

the red robot for each n. In the 1st order case, velocity

is allowed to change instantaneously. However, the velocity

profiles become smooth as n increases.

Table I shows that computation time for trajectory genera-

tion increases slightly with the order of the robot’s dynamics.

This is because robots with higher order dynamics are subject

to more continuity constraints, increasing the complexity of

each robot’s QP. However, the computation time for planning

remains approximately the same, as the motion plans for the

problems are identical.

C. Effect of Problem Density
We further test the performance of our algorithm as the

problem difficulty increases. We generate a set of start
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(d) 15-robot optimal solution.

Fig. 6: Sample trajectories generated by proposed algorithm.

Circles represent start positions and stars of the same color

represent the corresponding goals.
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Fig. 7: Solutions to the same 7-robot problem for different

types of robots. “Order” refers to n, the order of the robots’

dynamics. Circles represent start positions and stars of the

same color represent the corresponding goals.

positions for 20 robots, s

init

. We then consider the start

positions s = D

k

s

init

and nominal goal positions g

nom

=
s + [2R; 0], where D

k

is a chosen constant. We assign the

first d D

k

D

k,max

Ne robots to move directly to the goal 2R to

their right. These robots will be able to move directly to

their goals. The remaining robots are assigned to a random

remaining goal. Thus, as D

k

decreases, the number of

collisions increases and the available free space decreases.

Table I lists results for various values of D

k

. As expected,

“denser” problems were in general more computationally

expensive to solve. However, there does not seem to be a

clear trend after D

k

increases to values greater than 50,

as in these scenarios, the amount of free-space available

decreases the chances of collision. For these experiments,

n = 3, R = 1 m, D

k,max

= 100.

As a second experiment, we generated problems where all

robots collide at a single choke point. Fig. 8 shows example

problems. This scenario often proves computationally diffi-

cult for many planning algorithms. Here, n = 2, R = 1 m.

Fig. 8 shows a number of solutions. In each case, robots

are able to successfully circle around each other to reach their

goals. We see from Table I that computation time increases

for large teams, however again, this increase is mainly in

the trajectory generation step as the number of collision

avoidance constraints increases.

D. Future Work

There are a number of areas in which the algorithm

can be improved. As noted by past works [14] [17], this

type of QP formulation for trajectory generation can yield

trajectories with large excursions if the time allocation be-

tween waypoints is poorly chosen. This problem is amplified

in the multi-robot planning domain, as all robots must be

synchronized in their motions between feasible regions for

collision avoidance. As a result, a good time allocation for

one robot might cause the trajectory of a neighbor to become

suboptimal. Fig. 9a illustrates an example of this, where the

blue robot has an extremely long trajectory because there is

“too much” time allocated to a trajectory segment. In future

work, we hope to develop better time allocation heuristics.

Further, as the number of robots in the team increases, the
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(d) 20 robots.

Fig. 8: Solutions to problems where robots collide at a single

point. Circles represent start positions and stars of the same

color represent the corresponding goals.

commercial solver begins to encounter numerical instability.

This is caused by both the increase in the size of the decision

vector as the number of waypoints in the motion plan

TABLE I: Computational time for various experiments.

“Planning” refers to time needed to generate the motion plan,

“Traj. Gen.” refers to time needed to generate trajectories,

and “Total” refers the time for the entire algorithm.

Exp. Factor Plan. (s) Traj. Gen. (s) Total (s)

Team Size Num. Robots

2 0.26 1.3 1.6

5 0.29 1.5 1.8

8 0.32 1.7 2.0

10 0.81 1.9 2.7

15 1.2 2.9 4.1

18 2.0 5.8 7.8

20 2.3 7.3 9.6

Dynamics Order

1 0.63 1.9 2.5

2 0.63 1.9 2.5

3 0.67 2.0 2.7

4 0.71 2.1 2.7

Density Dk
1 1.09 9.2 10.3

10 2.8 11.1 13.9

20 2.2 3.6 5.8

40 0.91 2.7 3.6

50 4.4 3.6 8.0

60 1.2 2.2 3.4

80 1.5 2.3 3.8

100 0.49 2.0 2.5

Antipodal Num. Robots

2 0.55 1.3 1.8

4 0.56 1.7 2.2

8 0.63 1.9 2.6

10 0.64 2.3 2.9

16 0.65 4.2 4.8

20 0.79 6.8 7.6
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Fig. 9: Examples of suboptimal trajectories. Circles represent

start positions and stars of the same color represent the

corresponding goals.

increases and the number of collision avoidance constraints.

Eliminating redundant inequality constraints could alleviate

this problem.

Finally, the trajectory is bound to remain within the

specific series of convex regions laid out by the motion

plan. This can also result in suboptimal trajectories. For

example, in the example problem in Fig. 9b, once the green,

red, and purple robots have smoothed out their nominal

trajectories into optimal trajectories, the blue robot can easily

move directly to its goal. However, because the motion plan

includes the blue robot in the CHOP, its trajectory must

also circle around its neighbors before arriving at its goal.

Situations like this are extremely difficult to detect and avoid,

as allowing the blue robot to move directly to its goal would

violate the convex region partition required by the collision-

avoidance constraints. We hope to explore solutions to these

issues in future work.

The most notable advantage of our algorithm is its for-

mulation of the trajectory generation problem as a QP with

only linear constraints, whereas previously proposed methods

have required integer constraints. It has been shown in

single-robot applications that QPs can be used for real-time

planning. Further, the decoupling of the QP for each robot

suggests this algorithm would be practical for a decentralized

system as well. We hope to leverage these capabilities and

apply this algorithm for real-time planning for a decentral-

ized multi-robot team.

IX. CONCLUSION

In this work, we present a novel algorithm to solve the

labeled multi-robot trajectory generation problem. Unlike

many multi-robot planning algorithms, our method gener-

ates optimal trajectories for robots with general n

th

-order

dynamics. Further, our formulation allows decoupling of

the trajectory generation problem into separate Quadratic

Programs for each robot. Our algorithm is safe and complete.

In future work, we hope to improve the quality of our

solutions by finding better heuristics for time allocation and

eliminating redundant constraints from the QP. We further

hope to formulate a decentralized version of this algorithm.
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